

Big data

Underlying hypothesis in the literature :
 Data → Value

• The problem is obviously more complex.

Algo (data) \rightarrow Value

or

 $Algo_i (data_i) \rightarrow Value$

Our argument is that the role of algorithms and the complexity of their design is vastly underestimated.

=> <u>Illustrative case study</u> : the emergence of a new dominant design in meteorological data assimilation

Big data							
Underlying hypoth <u>Methodology : 2 types of sources</u>							
• The problem is ob	 The literature: History / sociology of science on use of space data (from Courrain, 1991 to Edwards, 2010) National Research Council reports on use of space data (2000, 2003 & 2007) Scientific literature on data assimilation. Interviews: O. Talagrand (LMD), le 26/5 & 5/9 2014, ENS, Paris J. Pailleux (MF et ECMWF), le 4/6/2014, Paris Ph. Courtier (MF et ECMWF), le 13/6 & 15/7 2014 (Champs / marne et Paris) 						
Our argument is that their design is vastly a => <u>Illustrative case stud</u> meteorological data assim	 Fl. Rabier (ECMWF et MF), le 8/9/2014, ECMWF, Reading J. Derber (NOAA, email & interview 8/9/2014, ECMWF, Reading) 						

Numerical Weather Prediction : a (very) brief overview

- The <u>Meteorological Research Project</u> launched by J. Von Neumann and directed by J. Charney in 1946 at Princeton as a part of the Electronic Computer Project (IAS Computer)
- First operational NWP in 1954 in Sweden and in 1955 in the US.
- A central tool of all weather services worldwide
- Over the last 30 years : a <u>steady improvement in the accuracy of</u> <u>forecasts</u> which are increasingly valuable for a wide array of uses (air transportation, agriculture, outside activities, industries, storm warnings, etc)

The emergence of a new dominant design : variational assimilation (Algo₂)

• To overcome the limits of optimal interpolation, meteorologists explore new data assimilation methods.

=> <u>Variational assimilation</u> becomes a major research topic in the late 80's and 90's. Originally to improve uncertainty integration in assimilation, not for satellite data.

- The logic of this method is to minimize a cost function « *which measures the misfit between the estimate and the information weighted by its statistical quality*" (Courtier, 1997) over a given time windows (thus its name : 4D-VAR)
- The breakthrough comes from the <u>interactions of meteorologists and</u> <u>mathematicians of optimal control</u>.

Implementation (1) : the challenge (Courtier, 1997) ues. In numerical weather prediction, the practical difficulty is that it is impossible to use Eqs. 2 and 3 directly. B , for example, is a matrix of size $10^7 \times 10^7$						
	which is about 1000 times the total archiving capa- bilities of ECMWF and one million times the mem- ory size of the current computers. The scientific difficulty of data assimilation is to find algorithms which simplify Eqs. 2 and 3 to an affordable amount of computer resources, while preserving some of the essential characteristics.					
« <i>Had I know</i> [in 1982 – 1983] <i>what it cost</i> [in computing power] <i>I would have given up immediatly</i> [laugh]!! <i>We didn't suspect the</i> <i>difficulties</i> [of operational implementation]. FX Le Dimet, Grenoble, le 11/9/2014						

Implementation (2) : the IFS / ARPEGE project (1987 – 1997)

• Launched in 1987 by ECMWF and Meteo-France.

- Implementing 4D-VAR means designing (Andersson & Thepaut, 2008)
 - A forecast model and its adjoint.
 - The observation operators linking the observed variables to the model quantities; code to compute the observation cost function *J*o and its gradient.
 - The first-guess operator, to incorporate information from recent analyses; code to compute the first-guess cost function *J*b and its gradient.
 - Balance operators to ensure the appropriate relationship between mass and wind.
 - General minimisation algorithm, to seek the analysis as the minimum of the cost function *J*o+*J*b.
 - A suitable solution algorithm that can take advantage of the computing power available on multi-processor computing platforms.
- The driving force : Philippe Courtier
- Result : operational integration of radiances at ECMWF in 1996 for 3D-VAR, and 1997 for 4D-VAR.

Π	Algorithmic bre	eakthrough in implementation too.		_				
I	Q. J. R. Meteorol. Soc. (1	994), 120 , pp. 1367–1387	551.509.313.22					
	A strategy for oper	rational implementation of 4D-Var, using an i approach	ncremental	7 – 1997)				
		COURTIER [•] , JN. THÉPAUT and A. HOLLINGSWORTH uropean Centre for Medium-range Weather Forecasts, UK	nce.					
II		(Received 9 July 1993; revised 13 January 1994)		rsson & Thepaut, 2008)				
	required before operations a significant reduction in co An approximation to 4D-V	SUMMARY te reduction in the cost of four-dimensional variational assimilar i implementation is possible. Preconditioning is considered and, as at, it seems that it is unlikely to provide a reduction as large as an ord far, namely the incremental approach, is then considered and is a if the assimilation window as an extended Kalman filter in which no	lthough it offers er of magnitude. hown to produce	he model quantities; code				
	are made in the assimilating This approach provides the	model but in which instead a simplified evolution of the forecast err e flexibility for a cost-benefit trade-off of 4D-Var to be made.	or is introduced.	ent analyses; code to				
[compute	the first-quess cost function <i>I</i> b and its gr		-				
	– Balance	<u>BUT</u> : developing and	impler	nenting	wind.			
	– General	Algo, is a 10 years e	- ffort w	hich	e cost			
	function .	U 1						
	 A suitabl 	mobilize approx.100 F		E	ver available			
	on multi-j • The drivi	in a data-centric / r	1-based					
		organizati	0 n		in 1006			
• Result : of in 19								
	for \Rightarrow Algo ₂ (data ₂) \rightarrow \uparrow Value (better forecasts)							

- In 1993-94, despites years of hard work, variational assimilation still does not assimilate radiances satisfactorily (no improvements in forecasts).
- Ph. Courtier understood that <u>the problem comes from the fine-tuning</u> <u>of the background error covariance matrix</u>, which is excessively complex.

« At this moment, in 1993-94, I remember that B has been adjusted in 1985-86 by Hollingsworth & Lundberg to make the best use of wind data collected by airplanes. And I realize that this leads to a bad use of temperature data. The correlation functions were filtering out the temperature information of radiances. This is why the impact of 3D-VAR remains marginal. We change this. And it works. » (interview with Ph. Courtier, june 13, 2014).

« You have to imagine the sweat and tears during all this long years » (JN Thépaut, Head of data division, ECMWF)

- During the long journey from Algo₁ (data₁) to Algo₂ (data₂) we observe 3 breakthroughs
 - On data : from direct measurement to satellite soudings
 - On assimilation methods : from OI to 3D-VAR
 - <u>On implementation</u>: incremental method, recoding of the model, coding of its adjoint, more powerful supercomputers, etc.
- Keep in mind that Meteorology is a very « favorable » context.
 - Data-centric organization
 - Infrastructure available (research centers, supercomputers, WMO...)
 - Models & data are « known »
 - No debate on « value »
 - Huge operational constraints (2 forecasts / day)
 - \Rightarrow We know what we are looking for (better temperature measurements)

« You have to imagine the sweat and tears during all this long years » (JN Thépaut, Head of data division, ECMWF)

• During the long journey from Algo₁ (data₁) to Algo₂ (data₂) we observe 3 breakthroughs

- On data : from direct measurement to satellite soudings

- This raises important questions for the « big data » strategy of firms & the building of big data design capability
- Currently there is no equivalent of engineering department for algorithms design (people, models, design rules, knowledge...)
 - Who is in charge of algorithm design in industrial firms (and in datacentric organizations) ?
 - ➤ Links with the emerging Data Science ?
 - > Development of the technical infrastructure ?
 - > Transfer of design methods to data ?
 - => Lots of exciting work ahead...

