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Although much work on modularity and complexity exists within different domains 

(e.g. Computer Science, Biology, Economics), this work is seldom shared between 

domains due to the domain-specificity of the representations and terminology adopted. 

This article seeks to address these missed opportunities for cross-domain exchange by 

introducing a domain-neutral systems characterisation framework and diagrammatic 

scheme that relates different aspects of modularity (structural encapsulation, function-

structure mapping and interfacing) to different aspects of complexity. This framework 

gives researchers and practitioners a common basis for distinguishing between different 

types of complex system characterisation, allowing them to connect the discourse, 

methods and findings from different domains. 

 

1 Introduction 

This article introduces a domain-neutral framework that relates different aspects of 

modularity to different aspects of complexity. Distinguishing between different types of 

complex systems characterisations gives researchers and practitioners a basis for navigating 

and relating the discourse, methods and techniques drawn from different domains.  

 

A systems perspective is widely adopted in both Design and Science to characterise the 

entities being designed or studied. Some of these systems are given the label ‘complex’, 

referring to the fact that they exhibit properties seen to arise through ‘self-organisation’ or 

‘emergence’. The ‘complex system’ label also applies to systems with elements and 



interactions that need to be understood at different levels or from different perspectives. 

When the relationships between these different levels and perspectives are not well-defined, 

the system can be seen as exhibiting unexpected behaviours.  

 

While ‘complexity’ in the design context has traditionally been cast in a rather negative light, 

attempts have also been made to harness complexity in engineering (e.g. ‘complexity 

engineering’ (Ottino, 2004), ‘learning from nature’ (Dressler and Akan, 2010)). The goal has 

been to create more efficient systems with desirable change-related properties, such as 

adaptability, robustness, resilience and evolvability (discussions of these can be found in 

(Fricke and Schulz, 2005; McManus and Hastings, 2006; Ross et al., 2008; Ryan et al., 2013; 

Schoettl and Lindemann, 2014). In all these cases, concepts of complexity, self-organisation 

and emergence become central to design practice. Furthermore, a complex systems 

perspective is becoming increasingly common in today’s design and engineering problems 

which often cut across traditional domain boundaries and involve both designed and non-

designed entities. There are many examples of this:  

 distributed computational systems and the internet are studied as natural ecologies 

(Gao, 2000; Forrest et. al., 2005);  

 evolutionary design and evolutionary computing study the way selection and 

diversification mechanisms operate in different environmental conditions (fitness 

landscapes) to give differences in the space of design solutions (Bentley, 2002; de 

Jong, 2002);  

 complex sociotechnical systems are characterised as partially designed and partially 

evolving (de Weck et. al., 2011);  

 bio-engineering seeks to design and manufacture artificial systems from biological 

substrates (Endy, 2005; Knight, 2005).  



 

For designers, modular architectures permit a system to be divided into more manageable 

parts which can be designed, produced and modified relatively independently. At the same 

time, sharing of modules between different systems reduces the resources required for 

developing the components and subsystems that comprise the system, providing a more 

efficient means of delivering variety and adaptability. For scientists studying complex 

systems, modularity offers a way of more manageably understanding the system by 

conceptually grouping together system elements, states, or behaviours. Relatively strong 

interactions or dependencies exist within modules, whilst relatively weak interactions exist 

across them so that different phenomena are modelled as arising through interactions between 

system elements.  

 

Although many domains have worked on understanding how modularity relates to 

complexity, they rarely benefit from each others’ methods, tools or insights due to domain-

specific terminology and a lack of explicitness or precision. The lack of an idealised 

representation that generalises across domains makes it difficult for those working within one 

domain to have confidence in their interpretation of the solutions proposed within another 

domain (Goldstone and Sakamoto, 2003). This not only limits the dissemination of useful 

knowledge, but also increases the likelihood that practitioners from different domains will 

mis-interpret or mis-apply each other’s solutions and methods. To make the theories, methods 

and findings from one domain accessible to other domains, we need to consider what 

modularity and complexity really are in domain-neutral terms, how they relate to each other 

in systems characterisations.  

 



Unlike existing ontologies (e.g. Bunge, 1977, 1979; Gero, 1990; Goel, 2009; Tomiyama et. 

al., 1993) and systems modelling frameworks (e.g. SysML1, CML2), our framework is not 

tied to strict semantics, but serves as a reference language for the discussion of modularity, 

complexity, and the ways in which they are related. To ensure conceptual explicitness, we 

give domain-neutral definitions and diagrammatic representations of the key terms 

introduced. We also use concrete examples drawn from diverse domains where appropriate. 

The objective is not to comprehensively review the literatures relating to systems 

characterisations, modularity or complexity but rather to provide an accessible means for 

researchers and practitioners working in different domains to navigate each other’s literature. 

Therefore we do not endeavour to cite all the ‘classic’ resources from different domains. 

Instead, we use citations mainly to refer the reader to more details on the examples or to 

illustrate terminological discrepancies. For pointers to domain-specific reviews, the reader is 

advised to consult introductory texts, on modularity in design (e.g. Baldwin and Clark, 2000; 

Gershenson et. al., 2003; Ulrich and Eppinger, 2003); on modularity in science (Newman, 

2006); on complexity in design (Luzeaux et, al, 2011); on complexity in science (Ladyman 

et. al., 2013; Mitchell, 2009); and on system characterisations generally (Meadows and 

Wright, 2008). The two appendices, which illustrate application of the framework to 

modularity and complexity literature also contain references to resources on these topics. 

 

The article is structured as follows. Section 2 introduces a framework for characterising 

systems, focusing on characterisations that are particularly pertinent to design and scientific 

domains. The framework also defines composition and classification relationships, which 

form the basis for levels, hierarchies and heterarchies. Section 3 identifies three core aspects 

of modularity: structural encapsulation, function-structure mapping and interfaces. Based on 

these, two abstractions are introduced: function-driven encapsulation, which relates structural 



encapsulation to function-structure mapping; and interface compatibility, which relates 

modularity to architectural variety. Section 4 uses the systems characterisation framework 

introduced in Section 2 and the aspects and abstractions of modularity introduced in Section 3 

to characterise different aspects of complexity. Section 5 concludes the article by 

summarising the relationships between the different aspects of modularity and complexity. 



2 Characterising systems 

To discuss modularity and complexity without being tied to the assumptions made by 

particular domains about systems,3 we need to have a set of domain-neutral constructs and 

terms for talking about systems. We use the term ‘characterisation’4 to refer to any 

representation, model, specification or description of an entity. Indeed, calling an entity a 

“system” itself assumes a particular kind of characterisation, which we call a “systems 

characterisation”. 

 

For the purposes of this article, we define a system as a set of entities and relationships, 

where the relationships are connections or interactions between the entities. We call the 

entities in the system the elements of the system, where those elements might themselves be 

considered systems.5  

 

By its very nature, a systems characterisation of an entity assumes it can be characterised in 

multiple ways, each of which emphasise different elements or aspects, reflecting different 

perspectives and purposes. Within a given context, characterisations are often reified by the 

community who apply them (Whitehead, 1919)6 so that a particular characterisation of an 

entity is treated as the entity itself. 

 

In order to avoid confusion between cases where we are referring to an entity ‘in the world’7 

and cases where we are referring to a characterisation of an entity in the world, we use the 

term ‘instance’ to refer to the former and the term ‘type’ to refer to the latter.8 For example, 

‘Boeing-747 instance’ would be used to refer to a particular Boeing-747 aircraft, while 

‘Boeing-747 type’ would be used to refer to the characterisation of Boeing-747 aircrafts, 

which would include their architecture, design specifications, functions, behaviour, and so on. 



   

2.1 Composition, classification and levels 

In terms of the relationships between entities, we can distinguish between two formal 

relationships, ‘compositional’ (part-whole) relationships, and ‘classificatory’ (subtype-type) 

relationships. These two relationships provide the basis for defining ‘levels’ and ‘hierarchies’ 

(see Section 2.1.2). 

2.1.1 Composition and classification 

A composition relationship implies an entity (the ‘whole’) that can be broken down into a set 

of further entities (the ‘parts’). The term ‘element’ itself implies a composition relationship 

between the element and the system. However, different sets of a system’s elements can also 

have part-whole relationships with each other. We use the terms ‘subsystem’, ‘component’ 

and ‘supersystem’ to characterise such relationships. These are relational terms that only 

make sense when defined with respect to each other and with respect to a given 

characterisation. With respect to a given system, s: 

 A subsystem of s is a subset of the entities and relationships in s. 

 A component of s is an entity in s that cannot be further decomposed. 

 A supersystem of s is a superset of the entities and relationships in s.  

In addition to defining subsystems, components and supersystems, with respect to a given 

system, we define an environment as a set of entities and relationships that are not in the set 

of entities and relationships constituting the system but that belong to a supersystem of the 

system (See Figure 1). 



 

 

 

Figure 1: In this diagrammatic scheme, there are different types of entity (represented by different shapes 

and interfaces). Here, the entities C1, C2 and C3 can be combined to make a system, SC1+C2+C3. System 

SC1+C2 is a subsystem of SC1+C2+C3. Entity C3 is a component of SC1+C2+C3 but is the environment of system 

SC1+C2. These basic aspects of composition apply to types of entities and also to instances of entities. 

 



Entities can be characterised at different levels of abstraction. Two elements can be seen to 

be different to each other at one level but the same as each other at another, more abstract 

level, where they belong to the same class or ‘type’. Classificatory relationships between 

characterisations determine which characterisations can be treated as equivalent. We define a 

type as a taxonomic group or ‘class’ associated with a set of subtypes and instances. With 

respect to a given system type, S (also see Figure 2): 

 A subtype of S is a taxonomic group containing a subset of the entity types, entity 

instances and characterisations contained in the set defined by S. 

 A supertype of S is a taxonomic group containing a superset of the entity types, entity 

instances and characterisations contained in the set defined by S. 

 An instance of S is a concrete realisation of S (an entity in the world) which belongs 

to the set of entities defined by S. 

Figure 3 shows multiple characterisations of an entity which differ in abstraction and 

composition. 



 

 

 

Figure 2: In this diagrammatic scheme, component types (outlined shapes) can be represented at two 

levels of abstraction: with stars or without stars, where stars represent some feature of the component. 

These types can also be instantiated (solid shapes). Where components are viewed at a level of abstraction 

that makes stars visible, there are two options: there might be one or two stars. Here, two different 

components are depicted, c2* and c2** (lower-case). Components c2* and c2** are instances of 

component types C2* and C2** (upper-case), both of which are a subtype of C2. As such, c2* and c2** 

are also both instances of C2. These basic aspects of classification apply to components, systems, 

subsystems, supersystems and environments. 

 



 

 

 

 

Figure 3: Multiple characterisations of the entity e with different compositions and levels of abstraction. 

Entity e can be characterised as an instance of the system type SC1*+C2*+C3*, composed of C1*, C2* and 

C3* but it might also be characterised as S[C1*+C2*]+C3*, composed of S[C1*+C2*] and C3*. It might also be 

characterised as an instance of the more abstract system types SC1+C2+C3 or S[C1+C2]+C3.  

 



 

2.1.2 Hierarchies and heterarchies 

The terms ‘level’ and ‘hierarchy’ are frequently found in systems discourse. The part-whole 

(composition) and subtype-supertype (classification) relationships defined above give us a 

means of more precisely understanding these terms. Implicit in the composition relationship 

is what is known as the ‘scope’ of the characterisation, which is the set of elements involved. 

Implicit in the classification relationship is the ‘resolution’ of the characterisation (also 

known as ‘granularity’ or ‘level of abstraction’), which is the set of distinctions that can be 

made between the elements.9 

 

We define ‘level’ as a specification of both the scope and resolution of a characterisation. For 

example, the level for the system type SC1*+C2*+C3* is defined by the scope of C1*+C2*+C3* 

and the resolution of SC1*+C2*+C3* as a subtype of SC1+C2+C3. Given the definition of ‘level’, a 

(clean) hierarchy is defined as a set of related characterisations where the levels do not 

overlap. A classification hierarchy is a structure in which if one element is the subtype of 

another element, it can not also be its supertype. A compositional hierarchy is a structure in 

which, if one element is the part of another element, it can not be the whole with respect to 

that element. For example, in SC1*+C2*+C3*, the component type C2* is related to the system 

type SC1*C2*C3* in a compositional hierarchy and to the component type C1 in a classification 

hierarchy (see Figure 4). 

 

In the case of complex systems characterisations, the constraint that levels do not overlap in a 

single characterisation is not observed. This is what is referred to as a ‘heterarchy’ 

(McCulloch, 1945, Gunji and Kamiura, 2004; Sasai and Gunji, 2008), ‘panarchy’ (Gunderson 

and Holling, 2001) or ‘entangled hierarchy’ (Palla, 2005) and can be represented by 



hypernetworks (Johnson, 2007; Chen, 2009).10 Figure 5 depicts a heterarchy that contrasts 

with the hierarchy described above. We discuss heterarchy further in Section 4.4. 



 

 

 

Figure 4: An example of a (clean) hierarchy. C2 is related to SC1+C2+C3 in compositional hierarchy, and 

C2*is related to SC1*+C2*+C3 in compositional hierarchy. C2* is related to C2 in classificatory hierarchy, 

and SC1*+C2*+C3*is related to SC1+C2+C3 in classificatory hierarchy. 

 



 

  

 

Figure 5: An example of a heterarchy. Although there is a classificatory hierarchical relationship between 

C2 and C2*, the relationship between SC1*+C2*+C3 and SC1+C2+C3* cannot be characterised by classificatory 

hierarchy alone. The relationship between C2 and SC1*+C2*+C3, and between C2* and SC1+C2+C3* cannot be 

characterised by compositional hierarchy alone. 

 



2.2 Aspects and mapping relationships 

As well as composition and classification relationships between different systems 

characterisations, there are also mapping relationships. These are used to relate 

characterisations of different aspects11 of the system, e.g. a function mapped to an 

architecture.12 This section considers three aspects of systems that are most pertinent in 

Design and Science: ‘architecture’, ‘functions’ and ‘properties’. The pervasiveness of these 

three concepts is evidenced by the existence of several ontologies relating them, e.g. (Goel et. 

al., 2009; Gero, 1990; Tomiyama, 1993) from design domains, and (Bunge, 1977; 1979; 

Wand and Weber, 1990) in scientific domains. 

2.2.1 Architecture 

We define an architectural characterisation as a description of the relationships between a 

set of entities. We define a system architecture as a characterisation of a system in terms of 

relationships between its elements.13 The separation of the structural relationships between 

elements from the mapping relationships between elements and functions is consistent with 

several definitions and discussions of architecture in the literature (e.g. IEEE, 2000; Simon, 

1962; Alexander, 1964; Maier, 2009).14 15  

2.2.2 Functions 

The term “function” is much discussed across various literatures on how systems operate (see 

reviews in Crilly, 2010; Erden et al., 2008; Houkes & Vermaas, 2010; Preston, 2009; 

Vermaas & Dorst, 2007), but it is not always easy to see how a general definition can apply 

across domains (e.g. to both artefacts and organisms). Generally, however, functions describe 

what a system should do, whether that is to satisfy the goals of some agent (e.g. users, 

designers) or to permit the system to survive and reproduce (e.g. in an ecosystem or market). 

We leave debate over the nuances of such definitions to other authors and instead focus on 



clarifying the relationship that functional characterisations have to other kinds of 

characterisation. Even though the realisation or ‘fulfilment’ of a function by an entity is 

dependent on its properties, which in turn might be related to its architecture, the functional 

characterisation of the entity can be considered independently of these other aspects.16  

2.2.3 Properties 

As well as functional and architectural characterisations, a system can also be given 

characterisations which might broadly be referred to as property-based. Although properties 

can be dependent on architecture and associated with particular functions, this is not always 

the case. Therefore, like architectural and functional characterisations, property-based 

characterisations can be considered independently. We use ‘property’ as an umbrella term for 

anything that can be said to be true of an entity (this might even include having a particular 

architecture or function). When this is expressed statically (or atemporally17), we call the 

property a state (Tomiyama et al., 1993). When it is expressed dynamically (in temporally 

extended terms), we use the term behaviour, or more precisely, state transitions (Gero, 

1990; Kam et al., 2001) and state transition rules (see also Section 4.3.2). 



3 Aspects and abstractions of modularity 

A system characterisation with a compositional hierarchy describes components and 

subsystems as interacting (or interfacing) with each other in well-defined, well-understood 

ways and is said to “modular”.  

 

Three core aspects of modularity pervade the modularity literature: structural encapsulation, 

function-structure mapping, and interfacing (Section 3.1). Appendix 1 illustrates how these 

aspects consolidate different definitions. From these core aspects, we can derive two further 

abstractions, function-driven encapsulation and interface compatibility (Section 3.2). 

3.1 Three core aspects of modularity 

The three core aspects of modularity are represented diagrammatically in Figure 6. For a set 

of system elements to be characterised as a module, the following are required: 

 Structural encapsulation so they can collectively be treated as a component. 

 One-to-one function-structure mapping. 

 Well-defined characterisation of their collective interactions with other system 

elements, interfacing. 

 

3.1.1 Structural encapsulation 

We use the term structural encapsulation to refer to the grouping of related system 

elements, i.e. subsystems, into units that can then be treated as component types at some level 

of abstraction. Structural encapsulation also implies ‘interface decoupling’ since it allows a 

set of related system elements to be considered independently from its interactions with other 

system elements.  

 



 

3.1.2 Function-structure mapping 

We use the term function-structure mapping to refer to the mapping between a set of 

related system elements (i.e. a subsystem) and a function. This structured set of system 

elements can then be encapsulated into a component type because of its association with the 

function, we refer to the encapsulation as ‘function-driven’ (see Section 3.2.1 below). 

 

3.1.3 Interfacing 

For a given element, we define its ‘interface’ as the aspect(s) of the element that allow it to 

interact with another element or set of elements in the same system. For those designing 

physical products it might be most natural to think of interfaces in terms of physical structure 

or geometric fit. However, interfaces can also be realised in nonphysical ways and the 

interactions need not be determined by geometry. Standards, protocols, languages, signals 

and processes, can all be treated as interfaces.  

 

Which aspect(s) of a system element is treated as its interface depends on the 

characterisation adopted, which defines the set of elements with respect to which 

interaction takes place. It is also possible for a characterisation to have multiple types of 

interfaces, each defined with respect to a different aspect of the system.18 19 

 

 



 

 

Figure 6: Three aspects of modularity: structural encapsulation (grouping of a set of elements), function-

structure mapping (collective mapping of a structured set of elements to a function), and interfacing (how 

a set of elements interacts with other systems). 

 



3.2 Two abstractions from modularity 

From the three core aspects outlined above, we can derive two further abstractions that also 

pervade the literature: function-driven encapsulation and interface compatibility. 

3.2.1 Function-driven encapsulation 

We use the term function-driven encapsulation to describe cases where the criteria for 

encapsulation come from function fulfilment (see Figure 7). With function-driven 

encapsulation, what makes elements within a group strongly connected to each other is that 

they collectively map to a function, and what makes this set of elements disconnected from or 

only weakly connected to other elements is the fact that these other elements do not 

participate in the fulfilment of this function (being ‘connected’ or ‘disconnected’ might also 

be a matter of degree). Function-driven encapsulation can be seen as one of a set of different 

forms of encapsulation, each of which is distinguished by the kind of criteria that determines 

encapsulation. For example, we might also have property-driven encapsulation where 

elements are ‘connected’ when they collectively realise a particular property.20 However, 

since it is the relationship between elements and functions that modularity is concerned with, 

we only consider function-driven encapsulation in detail.21 

 

In the case of modularity, there is a one-to-one mapping between a given set of connected 

system elements and a function. This means that every element contributes to the fulfilment 

of only one function. If every element in a system belongs to such a functionally grouped set, 

and fulfilment of the system’s overall function is completely accounted for by the function-

structure mappings to these sets, then the architecture can be said to be completely modular 

(see Figure 8). In the design and management of systems, encapsulation has been said to 

provide a means of ‘managing complexity’ by hiding the intricacies of certain regions of the 



system so that characterisations of them can be separated from the characterisation of the 

relationships that exist between them and other regions of the system.  



 

 

Figure 7. An example of function-driven encapsulation: the structural encapsulation of the module is 

determined by function-structure mapping. 

 



 

 

 

Figure 8: An example of a modular architecture. The system type SC1+C2+C3 has a completely modular 

architecture since all its elements (both SC1+C2 and C3) belong to or constitute modules (M1 and M2, 

respectively). In this case, the modules are defined by function-structure mapping. 

 



3.2.2 Interface compatibility 

Interface compatibility refers to the compatibility between a component type and other 

elements of the system it is part of. This compatibility might be a matter of degree and 

characterised as interaction strength. Interface compatibilities determine which system 

elements are able to interact with each other, thus providing a characterisation of the system’s 

architectural constraints. In a modular architecture, all elements would be modules or would 

belong to modules, and hence, interactions between elements in different modules would 

always be via their interfaces. If all modules in a system had the same mutually compatible 

interfaces with each other, there would be no architectural constraints i.e. architectural 

degrees of freedom would be maximised, and every element could be ‘repositioned’. This is 

known as ‘sectional’ modularity (Ulrich and Tung, 1991; Ulrich, 1995), where every element 

has the same set of interfaces. At the other extreme, where interfaces minimise architectural 

degrees of freedom and each element has a specific ‘position’ or ‘role’ in the system, we have 

‘slot’ modularity (Ulrich and Tung, 1991; Ulrich, 1995). In ‘slot’ modularity, each element 

has a unique set of interfaces, which implies that it has a unique set of interactions with other 

elements in the system and hence can only be located in one position with respect to them. 

These two extremes are shown in Figure 9, together with the intermediate case of ‘platform 

modularity’, where there is one element which interacts with all the others, and with respect 

to which the other elements can be repositioned since it interacts with them through identical 

interfaces. 

 

At the same time, interface compatibilities can provide a means of controlling which parts of 

the system can vary. In a given system architecture, different elements of different types 

(possibly mapping to different functions), so long as they have the same interface 

compatibilities,22 can interact with the same set of other elements. In a modular architecture, 



interface compatibilities determine which component types can be swapped or substituted for 

each other. The terms ‘component-sharing’, (Ulrich, 1995) ‘substitution’ (Garud and 

Kumaraswamy, 1993, Mikkola 2003) and ‘standardisation’ (Miozzo and Grimshaw, 2005) 

can be found in the literature to refer to cases where, at a particular level of abstraction, 

different component types are mapped to the same function (i.e. they are the same module). 

This ‘component-sharing’, together with overall architectural similarity between products, 

can be the basis for establishing product ‘families’ (Ulrich, 1995; Galsworth, 1994; Jose and 

Tollenaere, 2005). The term ‘component-swapping’ (Ulrich, 1995) is used to refer to cases 

where, at a particular level of abstraction, the component types are mapped to different 

functions but have the same interface (see Figure 10). If these differences in function have 

implications for a product’s overall function (i.e. functionally relevant at the system level), 

they provide the basis for the different variants in product ‘families’.23 

 

The distinction between types and instances introduced in Section 2 becomes important in 

discussions of ‘sharing’. Sharing between component instances equates to a particular 

component interacting with several other components (e.g. a USB bus and the devices 

plugged into it, an organism and the other organisms in its food web, a protein with many 

domains engaged in multiple reactions at the same time), while sharing between component 

types refers to a particular type of component being able to exist in many different system 

types, as in different products in a product family or different species in a genus. 

 

Interface compatibility provides us with a systematic means of characterising and analysing 

architectural variety as elements distinguishable by their compatibilities with each other 

being combined. 



 

 

  

Figure 9: Architectural variety from interface compatibility. In slot modularity, each component type has 

a unique set of interfaces and can hence only interface with a particular set of component types (in the 

diagram, the different interfaces are represented by different shaped connectors). In platform 

modularity, a single component type (the octagon in the diagram) interfaces with all the others with the 

same kind of interface. In sectional modularity, all component types can interface with all the others via 

the same kind of interface. 

 



 

 

Figure 10: ‘Component-swapping’ always implies ‘component-sharing’, and vice versa. When we are 

taking the perspective of an element (here, the octagon) that can interact with a variety of other elements, 

the architecture is characterised as ‘component-swapping’ (different components can be swapped ‘in or 

out’ of the octagon). When we are taking the perspective of different elements that can interact with the 

same element (the octagon), the architecture is characterised as ‘component-sharing’ (the octagon is a 

component that can be shared ‘between’ different elements). Here, we are representing types not 

instances, and so it is really a component type that is being swapped or shared. 

 



4 Aspects of complexity 

The two abstractions of modularity and three aspects of modularity on which they are based 

can be used to distinguish between different aspects of complexity. 

4.1 Function-structure mappings 

Function-driven encapsulation ensures one-to-one mapping between function and 

architecture. Complexity arises when the mapping is not one-to-one.  

4.1.1 Multi-structural function realisation 

We use the term multi-structural function realisation to describe cases where a function 

maps to more than one architecture (more than one component type at some level). In Design 

and Engineering, the term ‘principle redundancy’ (Pahl and Beitz, 1996)  describes cases in 

which multiple architectures can realise the same function. In Biology, the term ‘degeneracy’ 

describes cases where, when a particular element is not able to fulfil the function, other 

means of fulfilling that function are possible (Tononi et al., 1999; Edelman and Gally, 2001; 

Whitacre, 2010). A functions that was previously associated with a single element might also 

become distributed among multiple elements. Figure 11 contrasts modular and multi-

structural function realisation. To emphasise the level-dependent nature of function-structure 

mappings, these differ only in the distinguishability of the functions FX and FY. 

 

When different instances of a type can have different architectures, they can have different 

degrees of multi-structural function realisation (where ‘degree’ means the number of 

structures that can realise a function), even with the same mappings. 24 As an example, given 

the mapping shown at the top of Figure 12, there can be two different ways of achieving 

redundancy in the function FX. Similarly, a system instance might be more or less degenerate 



when in different states.25 Indeed the two architectures in Figure 12 might equally represent 

two different states (see Section 4.4 for architectural characterisations of state and behaviour). 

 

 

Figure 11: Modular and multi-structural function realisation depending on whether functions are 

characterised as being equivalent. Top: modular function realisation. If FY ≠ FX, then [C2+C3] and 

[C1+C3+C1] map to different functions and are hence different modules. Bottom: multi-structural 

function realisation. If FY=FX, [C2+C3] and [C1+C3+C1] map to the same function are hence alternative 

architectures for realising that function. 

 



  

Figure 12. Redundancy through duplicated architectures and distinct architectures. Top row: 

[C1+C2] maps to FX and [C1+C3+C1] maps to FX. Bottom left: redundancy in FX is provided by 

an architecture with duplication of [C1+C3+C1]. Bottom right: redundancy in FX is provided by 

two distinct architectural realisations, [C1+C3+SC1] and [C1+C2]. 

 



4.1.2 Context-dependent multi-functionality 

We use the term context-dependent multi-functionality to refer to cases where an 

architecture maps to different functions based on the wider system architecture it is part of, or 

in systems terms, where a subsystem realises different functions based on which other 

systems it is connected to (its environment), i.e. the supersystem it is part of. Figure 13 shows 

how C3 can be characterised as context-dependently multi-functional. When it is connected 

to C2, it realises FX1, and when it is connected to two instances of C1, it realises FX2.  

 

In design domains, re-purposing of products, product parts and processes are examples of 

context-dependent multi-functionality. For example, a steel rod realises different functions 

depending on the wider physical structure it is part of; in software, the same data can have 

different functions depending on the sections of the program that they flow into; the 

biochemical function of a protein can depend on the other molecules present; the economic 

impact of a purchase by a consumer depends on the purchasing activities of other consumers. 

 

 

Figure 13: An example of context-dependent multifunctionality: the same component (in this case, the 

square, C3) realises different functions by participating in different architectures, even if those 

architectures realise the same function. 



4.2 System boundaries and functions 

A modular system has subsystems (the modules) with well-defined boundaries (interfaces) 

and perfect compositional hierarchy. “Complexity” arises when boundaries are ill-defined or 

changing.  

4.2.1 Open and closed systems 

Open systems are systems whose elements are interchangeable with the elements of their 

environment, while closed systems are those whose elements are not.  

 

In a ‘closed system’ characterisation where the system has a well-defined boundary, given 

knowledge of all the possible characterisations within the boundary, it would be 

theoretically possible to define all the relationships between all the characterisations. 

However, when the number of characterisations and/or relationships between them is 

extremely large or not yet known, an idealised ‘open system’ characterisation may be used. 

For example, in design domains, the realisation of a product requires the realisation of an 

intricate set of connections between physical components, processes, people and 

organisations; in complex systems science domains, models of entities often consist of a 

web of interdependencies between a large number of system elements.26 An ‘open system’ 

characterisation of these scenarios would see the system as interacting with itself (as it 

would with its environment), and would see the interdependencies between the elements of 

the system as constantly changing.27  

4.2.2 Endogenous and exogenous functions 

In both design and scientific domains, the functions being considered in function-structure 

mapping often relate to different aspects of the system or even to different systems (with 

different boundaries), resulting in modular architectures which differ substantially from one 



another (Holtta and Salonen, 2003). For example, in product design, function-structure 

mappings may be defined with respect to the product’s overall function in use (which is 

typically linked to the satisfaction of user needs and preferences), but they can also be 

defined with respect to the product’s manufacture or contribution to firm strategy. In Biology, 

one set of functions might relate to an organism’s survival; another might relate to its 

development or to its role in evolution.  

 

To generalise, the functions in a function-structure mapping might originate from the 

consideration of different systems, and we can dissociate (i) the system for which the 

architecture is defined (e.g. the product; organism) from (ii) the system determining the 

functions to which this architecture maps (e.g. user; ecosystem). In the case of (ii), we might 

draw a distinction between ‘endogenous’ functions (e.g. product requirements; organism 

viability), which are defined with respect to the system in question, and ‘exogenous’ 

functions (e.g. user preferences, ecosystem role), which are defined with respect to the 

supersystem in which it operates (see Crilly, 2013).28 

 

The distinction between endogenous and exogenous functions is important because they can 

be associated with different levels of uncertainty. Failure to realise endogenous functions lies 

in improper realisation of the system type (e.g. a system part failing). Failure to realise 

exogenous functions on the other hand, can be attributed to the system’s environment, which 

can change the function-structure mapping. For example, changes in user preferences might 

mean that elements of the system that could previously satisfy a particular preference no 

longer can; a new set of conditions in an organism’s environment might mean that certain 

functions of the organism no longer map to the biological elements they were previously 

mapped to. If knowledge of the system’s environment is inferior to knowledge of the system 



itself, component types mapping to exogenous functions will have higher levels of 

uncertainty associated with them in terms of function fulfilment (e.g. the elements of the 

product associated with user preferences would have greater uncertainty associated with them 

than those associated with specified product functional requirements; biological elements 

associated with organism-level behaviour would have greater uncertainty than those 

associated with core metabolic functions). 

 

Figure 14 shows how different architectures might map to the same endogenous function but 

to different exogenous functions. In many cases, endogenous functions and exogenous might 

also be dependent on each other. For example, the realisation of the endogenous function FX 

might be dependent on the realisation of FY, or vice versa. 

 

 

 

Figure 14: Endogenous and exogenous functions: Fx is an endogenous function with respect to the system 

types S[C1+C3+C1] and S[C2+C3] while FY is an exogenous function with respect to these two system types. The 

architectures [C1+C3+C1] and [C2+C3] map to the same endogenous function FX but only [C1+C3+C1] 

maps to the exogenous function FY.  

 



 

4.3 Variety and change 

Interface compatibility and function-driven encapsulation in modular architectures imply 

well-defined relationships between functional variety and architectural variety, making 

functional variety straightforward to analyse and manage. In non-modular architectures, the 

relationship between functional variety and architectural variety is less well-defined. 

4.3.1 Architectural robustness and flexibility 

In modular architectures, function-driven encapsulation and interface compatibility mean that 

functional variety is proportional to architectural variety. 

 

In the case of multi-structural function realisation, architectural variety is high with respect to 

function. Compared to duplication, multi-structural function realisation offers a more robust 

form of redundancy when the different architectures able to realise the function have different 

points of fragility and strength (see Figure 15). On the other hand, it makes the function-

structure mappings more difficult to analyse , and when there is failure, it can be difficult to 

identify the elements involved.  

 

In the case of muti-functionality, functional variety is high with respect to an architecture. 

When it is not well-understood which contexts different functions are realised in, functions 

may be realised unexpectedly or ‘emerge’ (sometimes resulting in non-fulfilment of other 

functions). On the other hand, if the context-dependencies are well-understood, multi-

functionality can be exploited to get (desired) functional variety from a given architecture. 

 

We define the terms ‘architecturally robust’ and ‘architecturally flexible’ as follows: 



 A system is architecturally robust if variety in function is low with respect to 

architectural variety (the ratio of the number of functions to the number of 

architectures is low). 

 A system is architecturally flexible29 if variety in function is high with respect to 

architectural variety (in the limit, every architectural variation would be functionally 

relevant and the ratio would be 1).30 

Architectural robustness is positively associated with evolvability (Whitacre, 2010). The 

greater the architectural variation with respect to a function, the larger the set of possibilities 

to be selected from, and the greater the evolvability. Selection pressures can also be 

characterised in terms of function realisation. For example, referring back to the architectures 

in Figure 14, having both [C2+C3] and [C1+C3+C1] available as possibilities would make 

the system both architecturally robust with respect to FX (see Figure 15) and more evolvable 

with respect to FX compared to the case where only one of the architectures could be realised. 

If the system found itself in an environment requiring FY to be realised, there would be a 

selection pressure in favour of the architecture [C1+C3+C1]. We might also say that the 

evolvability of the system with respect to FX is in virtue of its adaptability with respect to FY. 

To some extent, this is simply a question of the level at which we are considering the system. 

For example, a production process might permit a change in parts supplier which then allows 

the firm to resist changes in supplier prices; an organism’s ability to change its behaviour in 

response to different temperature conditions allows it to operate in different environments.31 

 

 

 



    

 

Figure 15. An example of how multi-structural function realisation provides robustness. As in Figure 13, 

[C2+C3] and [C1+C3+C1] are both mapped to FX but a new component type, C4 is introduced, which 

prevents the architecture [C1+C3+C1] from realising FX. In the bottom left architecture, the presence of 

C4 prevents S[C1+C3+C1]+[C1+C3+C1] from performing FX. In the bottom right architecture, the presence of C4 

does not prevent the system type S[C1+C3+C1]+[C2+C3] from performing FX because S[C2+C3] is unaffected by 

C4. The multi-structural function realisation architecture of S[C1+C3+C1]+[C2+C3] allows it to be more robust 

than S[C1+C3+C1]+[C1+C3+C1] with respect to performing FX since it can do so in the presence of C4. 

 

4.3.2 Behavioural robustness and flexibility 

Although change and variety can be seen as two distinct concepts, change can also be seen 

simply as variety observed through time. For example, with an atemporal view, demands to 

the system due to alterations in physical conditions or consumer preferences  (Dahmus et al., 



2001) become the same as those made by an environment with a wide range of physical 

conditions or a market with highly diverse consumer preferences.32  

 

While state transitions describe the behaviour of a system instance, state transition rules 

describe the behaviour of a system type.3334 State transition rules define the set of state 

transitions that are realisable (or that must be realised) by instances of the type, thus 

determining the states that the system can instantiate, its ‘state space’ (see Figure 16 and 

Figure 17).35 The rules mean that in a given system instance, transitions between states can be 

‘guided’ and ‘mutually constraining’, so that they follow particular ‘trajectories’ depending 

on previous states. This can result in behavioural ‘robustness’ and ‘flexibility’. In the same 

way that change can be recast as variety, we can give system behaviour (state transitions) an 

architectural characterisation. In the case of ‘behavioural robustness’, it is very difficult to get 

the system to deviate from a particular behaviour, consequently regularities in the 

architecture of the behaviour ‘emerge’.36 In the case of ‘behavioural flexibility’, there are few 

constraints on the states that can be realised by the system, and the architecture of the 

behaviour has few regularities. Such a system would be chaotic and difficult to manage, 

predict and understand.  

 

Terms such as ‘positive feedback’ and ‘negative feedback’ are used to describe the 

mechanisms which constrain or ‘guide’ behaviour (Ashby, 1962; Heylighen and Joslyn, 

2001; Babaoglu et al., 2005; Dauscher and Uthmann, 2005; Yamamoto et al., 2007). In the 

case of positive feedback, a particular state or behaviour increases the likelihood or extent of 

states or behaviours of the same type, while in the case of negative feedback, it diminishes 

their extent or likelihood. These two mechanisms and interactions between them form the 

basis for the ‘emergence’ of behaviourally robust self-* properties such as self-replication or 



self-assembly (Babaoglu et al., 2005), and homeostasis or ‘autopoiesis’, the ability of the 

system to maintain itself in a viable condition (Maturana and Varela, 1980).  

 

In some complex systems characterisations, the system’s environment can put the system into 

a state in which different rules apply or even directly affect which rules apply (see Figure 18), 

thus making different behavioural trajectories available. For example, one of an aircraft’s 

engines may fail as a result of exposure to airborne volcanic ash, which might put a heavier 

load on the other engines and make them more likely to fail. Similarly, how a stem cell 

differentiates might be determined by chemical factors in its environment but once 

differentiated, it multiplies and ‘locks’ a part of the system into developing in a particular 

way, i.e. it makes the subsystem associated with this developmental trajectory more robust 

(Bateson and Gluckman, 2012).  

 

In even more complicated cases, the system can itself influence its environment to make it 

more likely to realise particular states, which then reinforce the above effect. Identifying such 

scenarios is a key endeavour in the complex systems sciences.3738  

 

Architectural robustnesss/flexibility and behavioural robustness/flexibility address different 

aspects of complexity. In the case of architectural robustness and flexibility, it is the 

relationship between architecture (which might be the architecture of a system, system type, 

state or behaviour) and function that we are concerned with. By contrast, in the case of 

behavioural robustness and flexibility, we are concerned only with the architecture itself 

(characterised as regularities in behaviour).  

 



 

 

 

Figure 16. An example of a state space of a system type. The state space Q[C1+C2]+C3 of the system type 

S[C1+C2]+C3 is defined as the product Q[C1+C2]×QC3. This is every possible combination of the states that can 

be taken by SC1+C2 and C3. QC1+C2={q[C1+C2]*, q[C1+C2]**} and QC3={qC3*, qC3**}. 

 



 

  

 

Figure 17. Behavioural rules when system is considered on its own. The state transition rules result in the 

system iterating between the two left-hand states, irrespective of the initial state. 

 



 

  

 

Figure 18. Environmentally influenced behavioural rules. The presence of C5 changes the state transition 

rules so that the system iterates cyclically through all four states, irrespective of the initial state. 

 

4.4 Multi-level representations and heterarchy 

The notion of heterarchy was already introduced in Section 2.1.2. Heterarchical 

characterisations are ones where several hierarchies overlap in a single characterisation. 

These should be distinguished from characterisations which integrate multiple non-

overlapping hierarchies (e.g. Simon, 1962b, Skyttner, 2005). For pragmatic purposes, 

heterarchies are decomposed into such non-overlapping characterisations, such as in ‘System 

of Systems’ (SoS) characterisations (Maier, 1998) which integrate different resolutions 

without overlap in scope. 

 

Heterarchies can represent cases where different domains work together to understand a 

single entity (Alvarez Cabrera et al., 2009; van Beek et al., 2010), since different domains 

might emphasise different system aspects and consequently ‘carve up’ the entity in ways that 



overlap. Figure 19 shows an example of a complex systems characterisation of the entity e 

introduced in Section 2 based on the heterarchy in Figure 4. In the real world, these different 

mappings might represent characterisations associated with different domains, e.g. 

programmers, software architects, business analysts working on the same software; cognitive 

psychologists, neuroscientists, cell biologists and molecular biologists studying the brain.  

 



 

 

 

Figure 19. A Complex systems characterisation of entity e where functions are mapped to architectures 

specified at different levels. The characterisation is a complex systems characterisation because in order 

for the realisations of all the functions to be characterised, different levels of abstraction and scope 

overlap, i.e. heterarchy. 

 



5 Conclusions 

In this article we introduced a domain-neutral framework for understanding the relationships 

between different aspects of system complexity and modularity in different systems 

characterisations (see Section 2). We defined three core aspects of modularity and two further 

abstractions from them, function-driven encapsulation and interface compatibility (Section 

3). These were then explicitly related to different aspects of complexity (Section 4). Table 1 

summarises these, and Appendix 2 further illustrates how they can be used to characterise 

complex systems discourse. 



 

 

Types of complexity Section System characterisations, Aspect(s) and 

abstraction(s) of modularity 

Section 

Open systems characterisation 

 

4.2.1 Structural encapsulation, interfacing 3.1.1, 

3.1.3 

Multi-structural function realisation. 

 

4.1.1 Function-structure mapping. 3.1.2 

Context-dependent multi-functionality 

 

4.1.2 Function-structure mapping. 3.1.2 

Architectural robustness. 

 

4.3.1 Function-driven encapsulation, interface 

compatibility 

3.2.1, 

3.2.2 

Heterarchy. 2.1.2, 

4.4 

Composition, classification, levels, 

hierarchy. 

2.1.1, 

2.1.2 

Behavioural robustness, emergence, self-

organisation. 

4.3.2 Architecture, functions, properties, 

behaviours, states 

2.2.1, 

2.2.2, 

2.2.3, 

4.3.2 

 

Table 1. Different complex systems characterisations related to different aspects and 

abstractions of modularity (non-complex systems characterisations). The relevant sections of 

the present paper are listed in the columns to the right. 

 

As noted throughout this article, the extents to which an entity is considered to be a ‘complex 

system’ or a ‘modular system’ depend on how the entity is characterised. Systematically 

relating different aspects of complexity to different aspects of modularity permits complex 

systems problems to be (re-)characterised in different ways to find suitable solutions. It also 

allows methods from different domains to be applied to similar problems. In particular, we 



point to the following opportunities for the engineering design community to leverage 

existing methods (some drawn from the design context, others from scientific contexts):  

 Methodologies from Design permitting the systematic characterisation of the 

relationship between architectural variety and functional variety in a product family at 

different levels (e.g. ‘design for variety’, Martin and Ishii, 2002) could be used to 

analyse the relationship between architectural variety and functional variety of non-

designed entities. By generalising the notion of types, architectures and functions, we 

would be able to include both designed and non-designed system elements within the 

same characterisation. 

 Techniques for exploring system states in the Complex Systems sciences, such as 

agent-based modelling or numerical simulation could be used to understand the costs 

and benefits of different architectures with respect to different functions. When a 

large number of architectural configurations are possible, being able to simulate them 

and analyse the functional implications of certain family groupings would provide 

more solid justification for making architectural decisions at product, product family 

and even product portfolio levels. In addition, for systems with both designed and 

non-designed elements, we would be able to make better decisions about initialisation 

states and interventions that would help ‘guide’ the system into adopting certain 

architecturally characterised states with desirable properties. 

 Community detection and clustering techniques applied in the Complex Systems 

sciences could be used to discover different potential ‘family’ groupings with respect 

to different functions.  

 Both static architectural ‘patterns’ and dynamic ‘behavioural motifs’ could be shared 

across domains and application contexts.41 The domain-neutral nature of our 

framework would provide a basis for analysing dynamic architectures structurally to 



identify further trends and commonalities between them. These could be generalised 

to higher level design principles and guidelines for designers working on products and 

problems with complex systems characterisations. In turn, these might be further 

specialised and adapted for different application contexts. 

In both design and scientific contexts, the challenge posed by complex systems problems 

comes from having to integrate multiple overlapping characterisations. Many emerging 

technologies are said to involve ‘complex systems’ due to ill-defined mappings between 

architectures to functionally relevant properties. Similarly, those working in the complex 

systems sciences often struggle to integrate multiple models of a system with overlapping 

hierarchies, resulting in ‘heterarchical’ characterisations. The domain-neutral framework we 

have introduced allows complex systems problems to be expressed in multiple ways so that 

the insights, methods and techniques drawn from different domains and application contexts 

can be freely applied to the problems they are most suited to. 
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Appendices 

Appendix 1: Mapping modularity definitions to aspects of modularity 

Table A1 illustrates how the aspects of modularity introduced in this article can be used to 

characterise different notions of modularity found in the literature. For example, the sources 

in the first row define modularity in terms of structural encapsulation (or in the case of 

discourse, this is the aspect emphasised) while the sources in the second row emphasise 

function-structure mapping. 



 

 Aspects of modularity 

Source of definition Structural 

encapsulation 

Function-structure 

mapping 

Interfacing 

(George and Leathrum, 1985) 

(Gershenson et. al., 1998) 

(Jiao and Tseng, 1999b) 

(Newman, 2010) 

(Ulrich and Eppinger, 1995) 

X   

(Ishii et. al., 1995)  

(Otto and Wood, 2001) 
 X  

(Allen and Carlson-Skalak, 1998) 

(Baldwin and Clark, 1997) 

(DiMarco et. al., 1994) 

(Huang and Kusiak, 1998) 

(Newcomb et. al., 1996) 

(Sarker et. al., 2013) 

(Spencer, 1998) 

(Ulrich and Tung, 1991) 

(Ulrich, 1995) 

X X  

(Galsworth, 1994) 

(Walz, 1980) 
  X 

(Chang and Ward, 1995) 

 (Chen, 1987) 

(Jablan, 1997) 

(Sosale et. al., 1997) 

 X X 

(Carey, 1997) 

(Civil Engineering Research 

Foundation, 1996) 

(Pimmler and Eppinger, 1998) 

X  X 

(Hollta and Salononen, 2003) 

(Marshall et. al., 1998) 
X X X 

Table A1: Aspects of modularity found in different definitions of modularity. 

 



The list below gives the definitions represented in the table, including the domain-specific 

definitions reviewed in (Gershenson et. al., 2003): 

 In (Allen and Carlson-Skalak, 1998), a module is defined as a component or group of 

components that can be removed from the product non-destructively as a unit, which 

provides a unique basic function necessary for the product to operate as desired. 

Modularity is then defined as the degree to which a product’s architecture is 

composed of modules with minimal interactions between modules. 

 In (Baldwin and Clark, 1997), modularity refers to the ‘building of complex product 

or process from smaller subsystems that can be designed independently yet function 

together as a whole). 

 In (Carey, 1997), modularity is defined as design with subsystems ‘that can be 

assembled and tested prior to integration… to reduce the time and cost of 

manufacturing’. 

 In (Chang and Ward, 1995), a modular product as ‘a function-oriented design that can 

be integrated into different systems for the same functional purpose without (or with 

minor) modifications’. 

 In (Chen, 1987), modularity refers to ‘tools for the user to build large programs out of 

pieces’. 

 In (Civil Engineering Research Foundation, 1996), modularity is defined as using sets 

of units designed to be arranged in a variety of ways. 

 In (DiMarco et. al., 1994), a clump (module) is a collection of ‘components and/or 

subassemblies that share a physical relationship and some common characteristic 

based on the designer’s intent’. 

 In (Galsworth, 1994), a module is defined as a group of standard and interchangeable 

components. 



 In (George and Leathrum, 1985), it is required that for a software module, for a given 

function, there is no access to, informational flow to, or inter-activity between 

modules. 

 In (Gershenson et. al., 1999), it is stipulated that modules contain a high number of 

components that have minimal dependencies upon and similarities to other 

components not in the module. 

 In (Holtta and Salonen, 2003), a module is defined as a structurally independent 

building block of a larger system with fairly loose connections to the rest of the 

system. It is also required that they have well-defined interfaces which allow 

independent development of the module as long as the interconnections at the 

interfaces are retained. 

 In (Huang and Kusiak, 1998), modularity requires similarity of functional interactions 

and suitability of inclusion of components in a module. 

 In (Ishii et. al., 1995), the term ‘modular’ refers to the minimisation of the number of 

functions per component. 

 In (Jablan, 1997), modularity is considered as the use of several basic modules for 

constructing a large collection of different structures. 

 In (Jiao and Tseng, 1999b), a module is defined as a physical or conceptual grouping 

of components. 

 In (Marshall et. al., 1998), modules are defined as cooperative subsystems which (i) 

can be combined and configured with similar units to achieve different outcomes; (ii) 

have one or more well-defined functions that can be tested in isolation from the 

system and that (iii) have their main functional interactions within rather than between 

modules. 



 In (Newcomb et. al., 1996), a module is described as a set of components grouped 

together in a physical structure and by some characteristic based on the designer’s 

intent. 

 In (Newman, 2010), a module is defined as a subsystem in which the associations 

between elements within the subsystem are stronger than the associations between 

these elements and other elements in the system. This is expressed in network terms. 

A subsystem is a module when the number of edges within the subsystem is much 

higher than the expected number of edges derived from an equivalent random network 

model with the same number of elements and similar distribution of links between 

elements with no modular structure. 

 In (Otto and Wood, 2001), ‘conceptual’ modules are introduced. Each of these 

perform the same functions even if they have different physical compositions. 

 In (Pimmler and Eppinger, 1994), the discussion centres around the interactions 

between elements. Four types of interaction are identified: (i) spatial, the need for 

adjacency or orientation between elements; (ii) energy, the need for energy transfer 

between two elements; (iii) information, the need for information or signal transfer 

between two elements; and (iv) material, the need for material exchange between two 

elements. 

 In (Sarker et. al., 2013), a module is defined as a component or subsystem in a larger 

system that performs specific function(s) and emerges as a tightly coupled cluster of 

elements sharing dense intra-module interactions and sparse inter-module 

interactions. 

 In (Sosale et al., 1997), modules are groups of components that can easily be re-used 

or re-manufactured, also considering material compatibility. 



 In (Spencer, 1998), module refers to a ‘manageable portion’ of the code, with 

minimum interaction between modules (cohesion) and a high degree of interaction 

within module (high cohesion). 

 In (Ulrich and Eppinger, 1995), the most modular architecture is one in which each 

functional element of the product is implemented by exactly one chunk (subassembly) 

and in which there are few interactions between chunks. Such a modular architecture 

allows a design change to be made to one subassembly without affecting the others. 

 In (Ulrich and Tung, 1991), product modularity is defined in terms of ‘(1) Similarity 

between the physical and functional architecture of the design and (2) Minimization 

of incidental interactions between physical components.’ 

 In (Ulrich, 1995), a modular product or subassembly has ‘a one-to-one mapping from 

functional elements in the function structure to the physical components of the 

product’. 

 In (Walz, 1980), modularity is defined as ‘constructed of standardised units of 

dimensions for flexibility and use’. 

 



Appendix 2: Mapping complex systems discourse to types of complexity 

Table A2 illustrates how the types of complexity identified in this article can be used to 

characterise discourse on complex systems. The list below consists of extracts from a special 

issue of the journal ‘Science’ on Complex Systems (Science 2 April, 1999) and other texts 

found in Section 2 of (Ladyman et. al., 2013), which sought to identify the features of 

complex systems. For example, extract 1 is concerned with complexity as structural variation, 

implying multi-structural function realisation and architectural robustness with respect to a 

particular function. 



 

Extract 

Open systems 

characterisation 

Multi-structural 

function 

realisation 

Context-dependent 

multi-functionality 

Architectural 

robustness/flexibility 

Heterarchy 

Behavioural 

robustness, 

emergence, self-

organisation 

1  X  X   

2a      X 

2b X    X  

3     X  

4      X 

5 X     X 

6     X  

7 X  X  X  

8 X  X  X X 

9 X   X X  

Table A2. Characterisation of complex systems discourse identified in (Ladyman et. al., 

2013, Section 2).  

 



The extract indexes in the first column correspond to the following: 

1. “To us, complexity means that we have structure with variations.” (Goldenfeld and 

Kadanhoff, 19999, p.87) 

2. a. “In one characterization, a complex system is one whose evolution is very sensitive 

to initial conditions or to small perturbations, one in which the number of independent 

interacting components is large, or one in which there are multiple pathways by which 

the system can evolve. Analytical descriptions of such system typically require 

nonlinear differential equations ”  

b. “A second characterization is more informal; that is, the system is “complicated” 

by some subjective judgement and is not amenable to exact description, analytical or 

otherwise.” 

(Whitesides and Ismagilov, 1999, p. 89) 

3. “In a general sense, the adjective “complex” describes a system or component that by 

design or function or both is difficult to understand and verify… complexity is 

determined by such factors as the number of components and the intricacy of 

conditional branches, the degree of nesting, and the  types of data structures.” (Weng 

et. al., 1999, p.92) 

4. “Complexity theory indicates that large populations of units can self-organize into 

aggregations that generate pattern, store information, and engage in collective 

decision-making.” (Parrish and Edelstein-Keshet, 1999, p.99) 

5. “Complexity in natural landform patterns is a manifestation of two key characteristics. 

Natural patterns form from processes that are non-linear, those that modify the 

properties of the environment in which they operate or that are strongly coupled; and 

natural patterns form in systems that are open, driven from equilibrium by the 



exchange of energy, momentum, material, or information across their boundaries.” 

(Werner, 1999, p.102) 

6. “A complex system is literally one in which there are multiple interactions between 

many different components.” (Rind, 1999, p.105) 

7. “Common to all studies on complexity are systems with multiple elements adapting or 

reacting to the pattern these elements create.” (Brian Arthur, 1999, p.107) 

8. “In recent years the scientific community has coined the rubric ‘complex system’ to 

describe phenomena, structure, aggregates, organisms, or problems that share some 

common theme: (i) They are inherently complicated or intricate…; (ii) they are rarely 

completely deterministic; (iii) mathematical models of the system are usually complex 

and involve non-linear, ill-posed, or chaotic behaviour; (iv) the systems are 

predisposed to unexpected outcomes (so-called emergent behaviour).” (Foote, 2007, 

p.410) 

9. “Complexity starts when causality breaks down” (Editorial, 2009). 
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1 SysML standards are open source and are periodically revised, see: http://www.sysml.org/  

2 CML is developed as part of the Compass project, whose goal is to integrate different engineering 

notations and methods to support the building of Systems of Systems: http://www.compass-

research.eu/index.html  

3 Within a given context or domain, a lack of explicit precision in how terms are used tends to matter 

less because all those concerned tend to share similar assumptions (e.g. designers belonging to the 

same organisation designing the same or similar product, scientists in the same team studying the 

same system). 

4 In (Checkland, 1988; Colombo and Cascini, 2014), the term ‘holon’ is used. 

5 For a review of systems definitions see (Skyttner, 2005: pp. 57-58; Veeke, Ottjes, & Lodewijks, 

2008: p. 9). 

6 There is also a tendency to see terms such as ‘system’, ‘system of systems’, ‘complex system’ or 

‘emergence’ as describing the intrinsic nature of the entity. However, whether or not an entity is 

deemed to be a system, a system of systems, a complex system or to be seen as exhibiting 

emergence depends on our description or model of the system (although of course, it can not be 

ruled out that there are some entities for whom such characterisations would not be applicable). 

7 By ‘entity in the world’ we mean a concrete realisation, but this need not be physical. For example, a 

process in execution or a procedure that is adopted would count as entities in the world within the 

context of certain system characterisations. 

8 We are aware that the deeper semantics, ontological status and metaphysical implications of these 

two relationships is not uncontroversial (see, for example (Chisholm, 1973; Cleve, 1986) on the 

composition relationship, and (Tait, 1967; Zalta, 1983; Zemach, 1992) on the supertype-subtype 

and type-’’instance’ relationship); our definitions in this case serve simply as pragmatic working 

definitions to keep the discussion closer to everyday discourse. They do not imply a formal, 

ontological or metaphysical distinction between types and instances (instances can be seen simply 

as the entities at the bottom of type hierarchies).  



                                                                                                                                                        
However, it should be emphasised that while instances and types ‘point to’ entities in the world and 

characterisations, they should not themselves be identified with the entities and characterisations. 

We can therefore say that a given type is associated with a particular characterisation or set of 

characterisations (e.g. a particular architecture or a particular set of functional requirements), but it 

is not the characterisation itself (in the case of instances, it should be obvious that the sequence of 

words ‘an instance of a chair (type)’ is not the chair itself).  

9  For a more detailed discussion of scope and resolution, see Ryan, 2007. 

10 An example of overlapping classification would be an action, e.g. kicking a ball, which might on 

the one hand be characterised as the subtype of an action type, e.g. initiating a ball game, but on 

the other hand be seen as defining this action type, e.g. initiating a ball game is a subtype of 

kicking a ball. An example of overlapping composition would be a relationship between human 

beings, e.g. a friendship, which might on the one hand be characterised as part of the individuals 

involved but on the other hand be seen as consisting of these individuals (and therefore the ‘whole’ 

in which the individuals participate). Although these examples are simple, it should already be 

obvious that characterisations integrating them would be complex. 

11 In domain mapping matrix terminology, these different aspects are also known as different 

“domains”. 

12 The term “domain” is also used to refer to these different aspects of systems, e.g. domain mapping 

matrices represent mappings (e.g. Danilovic and Sandkull, 2005) between two different aspects of 

a system. 

13 The simplest possible architecture is a single component type. 

14 Although the terms ‘architecture’ and ‘structure’ are typically thought of in terms of spatial 

relationships between components (e.g. configuration design in the manufacturing literature, Jiao and 

Tseng, 1999b), we intend ‘architecture’ to be used in a more general sense here to refer to any 

relationships (e.g. temporal, logical, social, causal) that might exist between components. Our 

definition is therefore general enough to accommodate architectures defined at high levels of 

abstraction with respect to their applications, such as reference architectures (Holtta and Salonen, 



                                                                                                                                                        
2003; Cloutier et al., 2010) and product family architectures (Cloutier et al., 2010). It is also worth 

noting that while these high level architectures define a set of constructs with which to decompose 

certain system types, they themselves are system types with a particular architecture (in the same way 

that grammars are as much linguistic systems as are languages defined by these grammars).  

On the other hand, since we make no assumptions about the nature of the elements themselves, if 

these are functions, then the system architecture will define relationships between them. In this 

case though, in the system architecture we would not then map these functions (the elements) to 

other functions just as we would not map physical components to functions or a system composed 

of physical components. The practice in design domains of relating functions through function 

decomposition and function commonality (Jiao and Tseng, 1999a; Jiao et al., 2007) can be seen as 

examples giving functions architectural characterisations. Similarly, in scientific domains such as 

neuroscience, functions are often realised by different physical structures or spatio-temporal 

activation patterns (Coltheart, 1999; Bishop and McArthur, 2005). In such cases, scientists talk 

about two distinct architectures - a ‘physical’ architecture (equivalent in this case to the system 

architecture), which relates the components and subsystems, and a functional architecture, which 

may map to different physical architectures. As we shall discuss in Section 4, distinguishing 

between different architectures and being able to relate them to each other gives us a basis for 

precisely characterising certain forms of complexity (architecturally-based forms of complexity). 

For example, we can think of a system architecture as being ‘degenerate’ (non-modular) with 

respect to the system’s functional architecture but still allow that the functional architecture is 

modular with respect to some other functional architecture (or indeed another system architecture). 

15 We are aware of other definitions of ‘architecture’ that do include references to function, such as 

those found in (Ulrich, 1995; Baldwin and Clark, 2000; Mikkola, 2000, Mikkola and Gassman 

2003; Chen and Liu, 2005), where the product architecture refers to the scheme by which functions 

of a product are allocated to its physical components. In the manufacturing literature, there are also 

definitions of architecture that include reference to the entire product portfolio (a product portfolio 

consists of a set of product families), which consists of the union of the product architectures of all 



                                                                                                                                                        
members in the product family; this defines the function-component mapping of the entire product 

family (Zamirowski and Otto, 1999; Dahmus et al., 2001). 

16 This does not preclude the functions themselves making reference to these other aspects. For 

example, a functional requirement of a product might be that it has to adhere to a particular 

architecture or possesses certain specific properties. Furthermore, functions can themselves be 

treated as entities in their own right and given compositional characterisations (which 

‘subfunctions’ it is composed of or decomposes into) and classificatory characterisations (which 

functions it is seen to be a variant of and which variants it itself has).  See also (Pahl and Beitz, 

1984; Umeda and Tomiyama, 1997; Hubka, 1982) for more details on function decomposition. We 

are also aware of discussions about the formal validity of functional decomposition (Vermaas, 

2012) (e.g. it has been shown that the composition relation does not always meet all the formal 

requirements of the composition part-whole relationship given by mereology (Vermaas, 2013)) but 

since our framework does not define the deep semantics of such relationships, we consider this 

debate outside the scope of this article. Indeed, without making formal semantic assumptions, we 

can even permit dependencies and flows between functions such as those found between 

information processing functions in the model in (Smedt et al., 1996) or the function ‘chain’ for a 

screwdriver in (Stone et al., 2000). 

17 Note that saying a property is statically or atemporally expressed does not mean that it is itself static 

or does not have temporal extension, only that its characterisation does not include a dynamic 

aspect. For example, a system can be said to be ‘in a state of change’, which obviously refers to a 

property which is dynamic, but does not include the dynamic aspect in the characterisation. By 

contrast, saying that a system ‘went from one state of change to another state of change’ (as in the 

case of ‘epoch shifts’ in product lifecycles (Ross and Rhodes, 2007; Ross et. al., 2008) or ‘regime 

shifts’ in ecosystems (Gunderson, 2001)) would count as a behaviour since the dynamic aspect is 

included in the characterisation.   

18 For example, in Sanchez [2000], the following types of interfaces are distinguished: (i) attachment 

interfaces, which define how one component physically attaches to another (this is similar to the 



                                                                                                                                                        
snap-to-fit perspective taken above); (ii) spatial interfaces that define the physical space 

(dimensions and position) that a component occupies in relation to other components; (iii) transfer 

interfaces that define the way one component transfers electrical or mechanical power, fluid, a 

bitstream, or other primary flow to another; (iv) control and communication interfaces that define 

the way that one component informs another of its current state and the way that that other 

component communicates a signal to change the original component’s current state; (v) 

environmental interfaces that define the effects, often unintended, that the presence or functioning 

of one component can have on the functioning of another (e.g., through the generation of heat, 

magnetic fields, vibrations, corrosive vapors, and so forth); (vi) ambient interfaces that define the 

range of ambient use conditions (ambient temperature, humidity, elevation, and so on) in which a 

component is intended to perform. In Sanchez [2000], there are also user interfaces that define 

specific ways in which users will interact with a product, but we exclude this seventh type here 

because it involves a system rather than component level of description (i.e. it concerns the 

interface between the system type and user rather than between component types within the system 

type). Of course, we could treat the system type and user as component types of the userproduct 

supersystem, but this brings us back to talking about within-system interactions. At the same time, 

we are sensitive to the subtler issues that arise when addressing systems involving both human and 

‘technical’ components (Kroes et al., 2006). 

19 This might be determined by function-structure mapping. For example, what makes the geometry of 

a given system element its interface might be the requirement of physical fit for the formation of a 

composite structure to realise a mechanical or chemical function. 

20 We also acknowledge the fact that the distinction between function and property is not always 

straightforward, e.g. a function might be precisely to deliver a particular property or behaviour. 

21 Of course, in most cases, it is likely that function-driven encapsulation also implies property-driven 

encapsulation (since is by virtue of realising certain properties that structures map to particular 

functions), but they can still be considered independently.  



                                                                                                                                                        
22 Component types with the same interface compatibilities are also referred to as ‘module variants’, 

‘module types’ or even simply ‘modules’ (Galsworth, 1994). 

23 Some firms may even have product ‘portfolios’, where different families might share either or both 

architectures and component types (Zamirowski and Otto, 1999; Dahmus et al., 2001). In 

(Mikkola, 2003), a ‘substitutability factor’ is introduced which quantifies the impact of 

substitutability of component types by estimating the number of product families made possible by 

the average number of interfaces of components for a function. 

24 This has also been discussed in relation to a system’s susceptibility to risk and the application of 

modularity to mitigate risk, e.g. (Goswami and Tiwari, 2014) 

25 A concrete example of this scenario would be when, even though several different types of 

molecules could potentially catalyse a particular chemical reaction, at a given point in time, only 

molecules of one particular type are free from participating in other reactions to catalyse the 

reaction. Conversely, in another state, there may be many molecules of many different types free 

to participate in the reaction. Some of these molecules will then be ‘redundant’ with respect to the 

function. Thus, whether a particular element is essential or redundant with respect to a particular 

function is dependent on the states, behaviours and function realisations of other elements in the 

system (which are its environment), i.e. multi-structural function realisation implies context-

dependency in function when scope is reduced (this might be context-dependent multi-

functionality, but it can also include cases where the structure only realises one function in the 

system, but where realisation of this single function is context-dependent). 

26 Agent- and equation-based models are used to explore the different possible system behaviours. 

27 Open systems characterisations are those where the system itself can change structure, i.e. not do 

dependencies exist between elements, but which elements depend on each other can change. In 

(Giavitto and Michel. al., 2001), such open systems characterisations are said to be ‘dynamical 

systems with a dynamical structure’. “non-linear time variant systems” and “stochastic non-linear 

time variant systems” are also means of characterising open systems. 



                                                                                                                                                        
28 Using function in one or other of these ways has precedent in the earliest works of design theory 

(see review in Winsor & MacCallum, 1994: pp. 166-167). More recently, many variants of this 

conceptual distinction have been proposed, including device-centric functions and environment-

centric functions (Chandrasekaran & Josephson, 2000), action functions and purpose functions 

(Deng, 2002) and internal functions and external functions (Gzara, Rieu, & Tollenaere, 2003). 

29 Flexibility can also mean fragility if the majority of functions to which the architectures map are 

ones with negative consequences.  

30 In the product design context, a ‘design for variety’ (DFV) framework (Martin and Ishii, 2002) has 

been introduced which permits a more systematic treatment of the relationship between 

architectural and functional variety. Within this framework, the ‘flexibility’/’robustness’ axis is 

represented by the Generational variety index (GVI), which is a measure of the amount of redesign 

effort required for future designs of the product while the Coupling index (CI) represents the 

degree of coupling among product elements (how ‘modular’ the architecture is). 

31 In design domains, methodologies and indices have been introduced to quantify the adaptability, 

flexibility and robustness of product lines (see e.g. Gu et. al., 2009) by analysing the potential for 

architectural variety. Similarly, in scientific domains, methods and techniques exist to conduct 

analyses of the similarities and differences between different viable entities (e.g. genotypes of a 

species). 

32 We are not denying the fact that often, changes in a system in response to changes in its 

environment also alter the system’s capabilities with respect to future changes in requirements 

(e.g. a firm that was agile in the past may be unable to handle today’s rapidchanging technological 

landscape because it is now a global conglomerate organisation that is no longer agile). Rather, we 

are separating out the issue of being able to handle different requirements from a system’s identity. 

E.g., we do not make the distinction between the ‘spatial’ and temporal dimension of the 

environment made in (Heydari and Dalili, 2014). 



                                                                                                                                                        
33 In the Function Behaviour Stucture (FBS) framework defined in (Gero, 1990; Gero and Mc Neill, 

1998) and the Structure Behaviour Function (SBF) defined in (Goel et al., 2009; Vattam et al., 

2011), ‘structure’ can refer to a state type, architecture and/or their concrete realisation. 

34 The term ‘transition’ is general enough so that it need not require change in system state, but it does 

require that change can be observed somewhere; this might be change in the system’s environment 

or the passing of time We also try to avoid reference to time as a dimension in its own right so as 

to accommodate different interpretations of time, such as the Newtonian (the passing of time is 

itself a behaviour) versus the relativistic (time realised through behaviours, see, e.g. Callender, 

2011). 

35 Many sophisticated techniques exist for specifying state transition rules, such as petri nets (Zimmer 

et al., 1999; Weyns and Holvoet, 2002) or state charts (Kimiaghalam et al., 2002; Stamatopoulou 

et al., 2007), but a detailed review is outside the scope of this article. 

36 This constrained set might be mapped to the system type itself, i.e. a system type can be defined by 

a set of possible behaviours that we see as being essential for instances of the type to be ‘viable’. 

For example, to be a living human being is the realisation of certain biological functions which are 

mapped to architectures with particular commonalities; at a given point in time, some of these 

commonalities can be seen as ‘guiding’ the system toward realising other commonalities. 

Similarly, we might say that a system instance is a product because the mutually constraining 

properties and behaviours it realises throughout its lifetime map to the set of functions associated 

with the product’s functional requirements. 

37 E.g. Ford and Lerner, 1992; West-Eberhard, 2003; Yam, 2004; Schlosser and Wagner, 2004; 

Powell et al., 2005; Hornberg et al., 2006; Roth and Cointet, 2010. 

38 The environment might also determine the wider implications of the relationship between 

functional variety and architectural variety, which in turn can be used to further distinguish 

between different change-related capabilities. For example, flexibility (on our definition) can mean 

that a system is fragile in particular types of environment (which might also be characterised in 

terms of enviromental states of a single environment type) because many of the possibilities it has 



                                                                                                                                                        
available to it render it non-viable or functionally deficient at some other level of description. On 

the other hand, a different set of environments (which might be characterised as different 

environmental states of a single environment), flexibility might conversely make the system 

resilient because the functional variety afforded allows it to realise viable possibilities in. 

41 Recently, there have been significant efforts in both systems engineering Ingram et al. [2014] and 

synthetic biology Agapakis and Silver [2009], Agapakis [2014] to find appropriate representations 

of such ‘patterns’ so that they might be better shared within the domain. 


