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DRAFT 

Is Designing Independent of Domain? Comparing 
Models of Engineering, Software and Service Design 

Udo Kannengiesser and John S Gero 

This paper presents a quantitative method for analysing process models of design-
ing independently of the specific design domain. The method uses the situated 
FBS framework as the basis for a simulation model of a designer acting according 
to these models. The results of these simulations are sequences of design issues 
that are analysed using cumulative occurrence graphs with associated quantitative 
measures. The paper illustrates the approach by analysing and comparing three 
models of designing from different domains: Pahl and Beitz’ model of engineering 
design, the Rational Unified Process of software design, and a model of Design 
for Six Sigma in service design. The quantitative results indicate some commonal-
ities across the different models. These commonalities are related to the first oc-
currence of design issues in the design process, and to the continuity and the rate 
at which design issues are generated. 

1. Introduction 

Designing is a complex activity that has attracted a significant amount of 
attention from different research domains, trying to demystify its manifold 
processes. One of the biggest challenges is to define designing as a unique 
activity while it is used in a vast range of domains such as engineering, 
software, graphical interfaces, and electronics, to name a few. Understand-
ing the commonalities amongst different expressions of designing is a 
foundational step in developing a universal understanding of design (Asi-
mow 1962; Lawson 1980; Cross 1982; Dym 1994; Visser 2009). 

We hypothesise that designing is an act that is independent of the do-
main of its application. This paper presents an approach to testing this hy-
pothesis based on analysing and comparing models of designing from dif-
ferent domains. There have been similar efforts in the past. For example, in 
1998 an international workshop organized by Grabowski et al. (1998) 
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brought together design theorists from different disciplines, aiming to 
build a unified or universal design theory. Discussions concentrated on 
finding out whether differences between the models were caused by differ-
ent concepts or just by different terms for the same concept. Such discus-
sions have continued until today (Sim and Duffy 2003; Frey and Dym 
2006; Boon and Knuuttila 2009; Vermaas 2009; Eder 2012; Chakrabarti 
and Blessing 2014; Vermaas 2014; Lindemann 2014). 

Approaches to extracting commonalities across different models of de-
signing have been limited to qualitative analyses. In this paper we propose 
a quantitative approach to analysing and comparing models of designing. It 
is based on simulations of the design process using the domain-
independent function-behaviour-structure (FBS) ontology and its deriva-
tive, the situated FBS framework. The simulation models are constructed 
by mapping the models of designing onto the 20 processes defined in the 
situated FBS framework and aggregating them to the six design issues of: 
requirement issues, function issues, expected behaviour issues, structure 
behaviour issues, structure issues, and description issues. The cumulative 
occurrence of the six design issues over the course of a simulation is ana-
lysed in terms of their slope, their first occurrence, their continuity and 
their linearity. The quantitative approach presented in this paper is applied 
to Pahl and Beitz’ model of engineering design, the Rational Unified Pro-
cess of software design, and the Design for Six Sigma model of service 
design. 

This paper is structured as follows: Section 2 presents the three models 
of designing that will be used to demonstrate the approach and outlines 
their common overall process structure qualitatively. Section 3 develops a 
simulation model for these domain-specific models of designing based on 
the steps contained within them. Section 4 presents the results derived 
from running the simulation for each of the three models of designing. 
Section 5 describes the commonalities found, and Section 6 discusses 
some conclusions that can be drawn from the results. Appendices include 
the situated FBS framework and the mappings between the three models 
and the FBS design issues. 

2. Three Domain-Specific Models of Designing 

Domain-specific models differ from each other mostly in the concepts they 
use for describing the respective artefacts to be designed. These models 
commonly represent designing as a phase-based activity (Tate and Nord-
lund 1996) where the state of the design gradually progresses from abstract 
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to concrete. We chose three phase-based models of designing from dispar-
ate design domains as a basis for our analyses: engineering design, soft-
ware design, and service design. 

Engineering design is a design discipline with a long tradition in devel-
oping models of designing. One of the most detailed and established mod-
els in this discipline is Pahl and Beitz’ (2007) Systematic Approach, which 
was first published in its German edition in 1977. It describes designing as 
a sequence of four phases: (1) Task Clarification, (2) Conceptual Design, 
(3) Embodiment Design, and (4) Detail Design. Task Clarification is con-
cerned with collecting, formulating and documenting the requirements of 
the product to be designed. Conceptual Design aims to identify the basic 
principles and outline of a design solution (or concept). Embodiment De-
sign then elaborates the design into a layout that satisfies various technical 
and economic criteria. Detail Design finalises the design and prepares pro-
duction documents. Each of the four phases comprises a sequence of activ-
ities that may be executed iteratively. After every phase a “decision-
making step” is performed to assess the results of the phase and decide 
whether the subsequent phase can be started or whether the phase needs to 
reiterate. Here, “[t]he smallest possible iteration loop is desirable” (ibid, p. 
129). Pahl and Beitz do not explicitly exclude iterations across different 
phases. On the other hand, the “stage-gate” character of the Systematic 
Approach clearly favours a “waterfall” view where iterations are to occur 
only within a stage or phase (Tate and Nordlund 1996; Unger and Epping-
er 2011). Table 1 shows the phases of Pahl and Beitz’ Systematic Ap-
proach, and the activities associated with each phase. 

Table 1 Pahl and Beitz’ (2007) Systematic Approach 

Phases Activities 

1. Task Clarifica-
tion 

1.1 Define basic market demands 
1.2 Define attractiveness demands of the market segment 
1.3 Document customer-specific technical performance re-
quirements 
1.4 Refine and extend the requirements using the checklist 
and scenario planning 
1.5 Determine demands and wishes 

2. Conceptual 
Design 

2.1 Abstract to identify the essential problems 
2.2 Establish function structures: overall function – subfunc-
tions 
2.3 Search for working principles that fulfil the subfunctions 
2.4 Combine working principles into working structures 
2.5 Select suitable combinations 
2.6 Firm up into principle solution variants 
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2.7 Evaluate variants against technical and economic criteria 

3. Embodiment 
Design 

3.1 Identify embodiment-determining requirements 
3.2 Produce scale drawings of spatial constraints 
3.3 Identify embodiment-determining main function carriers 
3.4 Develop preliminary layouts and form designs for the 
embodiment-determining main function carriers 
3.5 Select suitable preliminary layouts 
3.6 Develop preliminary layouts and form designs for the 
remaining main function carriers 
3.7 Search for solutions to auxiliary functions 
3.8 Develop detailed layouts and form designs for the main 
function carriers ensuring compatibility with the auxiliary 
function carriers 
3.9 Develop detailed layouts and form designs for the auxilia-
ry function carriers and complete the overall layouts 
3.10 Evaluate against technical and economic criteria 
3.11 Optimise and complete form designs 
3.12 Check for errors and disturbing factors 
3.13 Prepare preliminary parts lists and production docu-
ments 

4. Detail Design 

4.1 Finalise details; complete detail drawings 
4.2 Integrate into overall layout drawings, assembly drawings 
and parts lists 
4.3 Complete production documents with production, assem-
bly, transport and operating instructions 
4.4 Check all documents for standards, completeness and 
correctness 

 
The discipline of software design has also brought about several models 

of designing. Here, one of the most widely used models is the Rational 
Unified Process (RUP). Although it was primarily developed as a com-
mercial product, its basic concepts outlined by Kruchten (2004) form a 
publicly available and highly cited model of designing. RUP defines the 
following phases for software design processes: (1) Inception, (2) Elabora-
tion, (3) Construction, and (4) Transition. Inception deals with understand-
ing the requirements and defining the scope of the design. Elaboration 
specifies and prototypes the main features and architecture of the software 
design solution. Construction elaborates this solution by developing the 
complete set of features and implementing all the components of the soft-
ware. Transition focuses on verifying design quality, manufacturing, and 
delivering the software to the user. Kruchten (2004) suggests this four-
phase process be executed iteratively. He also suggests that the specific 
activities within each phase are to be configured depending on the needs of 
the individual design project. On the other hand, he describes “typical iter-
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ation plans” (ibid, Chapter 16) that can be viewed as a representative se-
quence of activities that is likely to cover most instances of software de-
sign processes. Table 2 summarises the phases and activities in such a 
“typical” configuration of RUP.1 

Table 2 Kruchten’s (2004) Rational Unified Process 

Phases Activities 

1. Incep-
tion 

1.1 Analyze the problem 
1.2 Understand stakeholder needs 
1.3 Define the system 
1.4 Manage the scope of the system 
1.5 Refine the system definition 

2. Elabo-
ration 

2.1 Decide which use cases and scenarios will drive the development 
of the architecture 
2.2 Understand this driver in detail and inspect the results 
2.3 Reconsider use cases and risks 
2.4 Prototype the user interface 
2.5 Find obvious classes, do initial subsystem partitioning, and look 
at use cases in detail 
2.6 Refine and homogenize classes and identify architecturally sig-
nificant ones; inspect results 
2.7 Consider the low-level package partitioning 
2.8 Adjust to the implementation environment, decide the design of 
the key scenarios, and define formal class interfaces; inspect results 
2.9 Consider concurrency and distribution of the architecture 
2.10 Inspect the architectural design 
2.11 Consider the physical packaging of the architecture 
2.12 Plan the integration 
2.13 Plan integration tests and system tests 
2.14 Implement the classes and integrate 
2.15 Integrate the implemented parts 
2.16 Assess the executable architecture 

3. Con-
struction 

3.1 Plan system-level integration 
3.2 Plan and design system-level test 
3.3 Refine use-case realizations 
3.4 Plan and design integration tests at the subsystem and system 
levels 
3.5 Develop code and test unit 

                                                             
1 For the Inception phase we use the workflow defined for the requirements disci-
pline and omit the design project management activities that are included in 
Kruchten’s “typical” Inception phase. We view these management activities as 
beyond the scope of a model of designing. For the Transition phase, where there 
are no “typical” activities defined, we use Kruchten’s deployment workflow. 
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3.6 Plan and implement unit test 
3.7 Test unit within a subsystem 
3.8 Integrate a subsystem 
3.9 Test a subsystem 
3.10 Release a subsystem 
3.11 Integrate the system 
3.12 Test integration 
3.13 Test the system 

4. Transi-
tion 

4.1 Plan deployment 
4.2 Develop support material 
4.3 Produce deployment unit 
4.4 Beta test product 

 
Service design is a more recent discipline with few existing process 

models. One of them is Design for Six Sigma (DFSS), which has been used 
to describe both designing products and designing services (or processes). 
One of the many variants of DFSS that is specific to designing services is 
the ICOV (Identify-Conceptualize-Optimize-Validate) model presented by 
El-Haik and Roy (2005). We will refer to this model as DFSS-ICOV in 
this paper. It proposes the following phases: (1) Identify, (2) Conceptual-
ize, (3) Optimize, and (4) Validate. The Identify phase collects and anal-
yses the requirements for the service to be designed, by listening to both 
the “voice of the customer” and the “voice of the business”. The Concep-
tualize phase determines the technical requirements and basic components 
of the service. The Optimize phase aims to configure the service in a way 
to achieve the best possible performance. The Validate phase tests and re-
fines the service and prepares its launch. At the end of every phase in 
DFSS-ICOV there is a review to decide whether to proceed to the next 
phase or whether to rework some decisions. Table 3 shows the phases and 
activities described in this model. 

Table 3 El-Haik and Roy’s (2005) Identify-Conceptualize-Optimize-Validate 
model (Design for Six Sigma) 

Phases Activities 

1. Identify 1.1 Idea creation 
1.2 Voice of the customer and business 

2. Conceptualize 2.1 Concept development 
2.2 Preliminary design 

3. Optimize 3.1 Design optimization 

4. Validate 4.1 Verification 
4.2 Launch readiness 

 
While there are obvious domain-specific differences between the three 
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models, we can already extract a first commonality: All three models use 
four sequential phases with similar goals, Table 4. As designing proceeds 
through the four phases, its focus ultimately shifts from the design problem 
(phase 1) to the design solution (phase 4), with two intermediate stages: 
One stage (phase 2) generates a list of general concepts that have the po-
tential of being used as starting points for synthesis of variations (“concept 
structure”). The other stage (phase 3) turns these general concepts into 
specific solutions with respect to formulated goals, constraints or resources 
(“solution structure”). This general four-phase model is consistent with the 
widely held understanding of designing as a progression from the abstract 
to the concrete (Roozenburg and Cross 1991; Welch and Dixon 1994; 
Hubka and Eder 1996). 

Table 4 Common goals of the individual phases in Pahl and Beitz’ Systematic 
Approach, Kruchten’s RUP, and El-Haik and Roy’s DFSS-ICOV 

Phase Systematic 
Approach  RUP DFSS-ICOV Overall goal 

1 
Task 
Clarification 

Inception Identify 
Understanding & 
defining the design 
problem 

2 
Conceptual 
Design 

Elaboration Conceptualize 
Generating a con-
cept structure 

3 
Embodiment 
Design 

Construction Optimize 
Generating a solu-
tion structure 

4 
Detail 
Design 

Transition Validate 
Finalising & deliv-
ering the design 
solution 

3. Developing a Simulation Model 

Models of designing are generally understood as guidelines to be used by 
designers when tackling a design task. If we can describe the activities of a 
designer who follows the guidelines provided by a specific model, we can 
simulate the design process represented in the model. This Section presents 
how such a simulation model can be produced in two steps: generalising 
the concepts and terms used by a specific model of designing into FBS 
design issues, and mapping the model onto the situated FBS framework. 
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3.1 Generalising Model-Specific Concepts into FBS Design Issues 

Each of the three models of designing describes detailed sequences of ac-
tivities within the four design phases. The models differ not only in the 
number of these activities (29 in the Systematic Approach, 35 in RUP, and 
7 in DFSS-ICOV), but also in the terms and concepts they use to describe 
the output of every activity. For a more detailed analysis, we need to map 
the specific concepts used in the models onto a uniform, generic coding 
schema. One such schema is the FBS design issue schema that has previ-
ously been used for analysing design protocols (Gero and McNeill 1998; 
Kan and Gero 2005). It consists of six design issues: requirements, func-
tion, expected behaviour, behaviour derived from structure (or, shorthand, 
structure behaviour), structure, and description. 

Requirements: includes all expressions of customer or market needs, 
demands, wishes and constraints that are explicitly provided to the design-
ers at the outset of a design task. For example, requirement issues include 
“technical performance requirements […] articulated by the customer” 
(Pahl and Beitz 2007, p. 150), “stakeholder requests” (Kruchten 2004, p. 
166), and “customer needs and wants” (El-Haik and Roy 2005, p. 84). 

Function: includes teleological representations that can cover any ex-
pression related to potential purposes of the artefact. These representations 
may be flow-based or state-based (Chittaro and Kumar 1998). Unlike re-
quirement issues, function issues are not directly provided to the designer; 
they are generated by the designer based on interpretations of requirement 
issues. Function issues in the Systematic Approach include “the intended 
input/output relationship of a system” (Pahl and Beitz 2007, p. 31) and 
some examples of needs related to safety, aesthetics or economic proper-
ties. Function issues in RUP include the notion of a use case as a “se-
quence of actions a system performs that yields an observable result of 
value to a particular actor” (Kruchten 2004, p. 98), and some “nonfunc-
tional requirements” that “deliver the desired quality to the end user” (ibid, 
p. 159). Function issues in DFSS-ICOV include “service and process func-
tional requirements” that are derived from those requirements provided by 
the customer (El-Haik and Roy 2005, p. 87). 

Expected Behaviour: includes attributes that describe the artefact’s ex-
pected interaction with the environment. They can be used as guidance or 
assessment criteria for potential design solutions. Expected behaviour is-
sues in the Systematic Approach include “physical effects” describing the 
“working principles” of the interactions between different parts of the de-
sign object (Pahl and Beitz 2007, p. 40), as well as “technical, economic 
and safety criteria” used for design evaluation (ibid, p. 193). Similarly, 
Expected behaviour issues in RUP are captured by the “design model” that 
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“consists of a set of collaborations of model elements that provide the be-
haviour of the system” (Kruchten 2004, p. 177), and “measurable testing 
goals” (ibid, p.  253) that are often subsumed in “nonfunctional require-
ments”. Expected behaviour issues in DFSS-ICOV include “CTSs (criti-
cal-to-satisfaction requirements, also known as big Ys)” (El-Haik and Roy 
2005, p. 33) and some “functional requirements” such as the (expected) 
“service time” (ibid, p. 96). 

Structure Behaviour (or “Behaviour derived from Structure”): includes 
those attributes of the artefact that are measured, calculated or derived 
from observation of a specific design solution and its interaction with the 
environment. Instances of structure behaviour must be of the same type as 
instances of expected behaviour, so as to allow for the comparison and 
evaluation of design solutions. As a result, structure behaviour issues cover 
the same notions in the three models of designing as outlined for expected 
behaviour issues. 

Structure: includes the components of an artefact and their relationships. 
They can appear either as a “concept structure” or a “solution structure”, 
which are the outputs of phases 2 and 3 in Table 1. The former includes 
Pahl and Beitz’ (2007, p. 40) “working surfaces” and “working materials”, 
Kruchten’s (2004, p. 174) “classes and subsystems”, and El-Haik and 
Roy’s (2005, p. 6) “design parameters”. The latter includes Pahl and Beitz’ 
(2007, p. 227) “layout” and “form”, Kruchten’s (2004, p. 256) “code”, and 
El-Haik and Roy’s (2005, p. 7) “detail designs”. 

Description: includes any form of design-related representations pro-
duced by a designer, at any stage of the design process. The descriptions 
presented in the Systematic Approach include sketches, CAD models, re-
quirements lists, physical prototypes, calculations, and other documenta-
tion produced by mechanical engineers. Descriptions in RUP include sto-
ryboards, UML models, code files, test plans and other representations 
produced by software designers. Descriptions in DFSS-ICOV include 
House of Quality diagrams, FMEA worksheets, process maps, and concept 
selection matrices, among many others. 

3.2 Mapping the Models of Designing onto the Situated FBS Frame-
work 

Every activity described in the three models of designing is concerned with 
generating one or more design issues. These activities may be mapped on-
to the eight fundamental processes defined in the FBS framework (Gero 
1990), labelled 1 to 8 in Fig. 1. For simulating the design process, howev-
er, these processes are still too coarse-grained as they do not include the 
situation in which they are performed. A more detailed view is provided by 
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the situated FBS (sFBS) framework (see Appendix A) that represents de-
signing as the interaction of a designer with the design situation (Gero and 
Kannengiesser 2004). This framework defines 20 discrete processes that 
include a number of cognitive and physical activities, such as the interpre-
tation of requirement lists and design representations, the reflection on cur-
rent or past design experiences, the decision-making regarding the current 
design state space, and physical actions including sketching, calculating 
and documenting. 
 

 
Fig. 1 The FBS framework 

 
Mapping the activities described in a model of designing onto the sFBS 

framework allows considering the designer’s situated interactions in the 
simulation model. At the same time, the basic representation of designing 
in terms of the six design issues is maintained. This is because the results 
of executing the 20 processes are specialised classes of design issues that 
can be aggregated back to the original six categories. The aggregation of 
the 20 sFBS processes to the six FBS design issues is shown in Table 5. 

Table 5 The results of each of the 20 sFBS processes (labelled based on the sFBS 
framework shown in Appendix A) are aggregated to the six FBS design issues 

sFBS process FBS design issue 
1 R 
2 R 
3 R 
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4 F 
5 Be or Bs (*) 
6 S 
7 F 
8 Be 
9 S 

10 Be 
11 S 
12 D 
13 S 
14 Bs 
15 --- (**) 
16 F 
17 D 
18 D 
19 Be or Bs (*) 
20 F 

* depending on whether the behaviour produced in these processes is in-
terpreted as expected/desired or “actual”/emerging 
** This process produces no design issue 

 
The mappings onto the sFBS framework require some interpretation of 

each of model of designing in terms of elementary steps and the logical 
sequences of these steps. The three models presented in Section 2 provide 
sufficient elaboration and illustration to support this interpretation for most 
of their defined activities. Take the first activity, “Define basic market de-
mands”, described within Pahl and Beitz’ design phase of Task Clarifica-
tion (see Appendix B, Table B1). This activity requires as input the inter-
pretation of a “development order” or “product proposal” that contains the 
product’s desired “functionality and performance”, which in the FBS de-
sign issue system is a requirement issue (interpreted by process 1 in the 
sFBS framework). Next, “basic market demands”, such as “suitable for 
tropical conditions” and “P > 20 kW” (Pahl and Beitz 2007, p. 147), are 
constructed by the designer as “implicit requirements, i.e. they are not ar-
ticulated by the customer” (ibid, p. 150). We map these market demands 
onto function and expected behaviour issues (constructed by processes 4 
and 5). They are compiled in a “requirements list” and “Quality Function 
Deployment (QFD)” diagrams (ibid, p. 145) that represent description is-
sues (produced by processes 18 and 17). As shown in Table 6, these map-
pings result in five elementary design steps, each of which produces one 
design issue, and their logical sequence. (More detailed comments for each 
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of the mappings in the Systematic Approach can be found in Appendix B, 
for RUP in Appendix C, and for DFSS-ICOV in Appendix D.) 

 

Table 6 The steps involved in Pahl and Beitz’ activity of “Define basic market 
demands” and their mappings onto the FBS design issue system and the sFBS 

framework 

Design 
step 

Pahl and Beitz’ 
description 

Process in sFBS (la-
bel) 

FBS design 
issue 

1 
Receive “development or-
der” or “product proposal” 

Interpret functional 
requirements (1) 

Requirement 

2 
Identify basic market de-
mands 

Construct functions not 
explicitly stated (4) 

Function 

3 
Construct expected 
behaviours not explicit-
ly stated (5) 

Expected 
Behaviour 

4 
Produce QFD diagrams and 
requirements list 

Produce external repre-
sentations of function 
(18) 

Description 

5 
Produce external repre-
sentations of expected 
behaviour (17) 

 
This method of coding and mapping was applied to all three models of 

designing. The complete set of mappings is shown in Appendices B, C and 
D. The Systematic Approach has 87 mappings, RUP has 100 mappings, 
and DFSS-ICOV has 41 mappings. 

The three sets of mappings of elementary steps can be viewed as a basis 
for simulation models that need to be complemented with assumptions re-
garding: 

1. the number of occurrences of every elementary step, and 
2. the number of iterations within a design phase (we assume that no 

cross-phase iterations will occur, given the “waterfall” nature of 
the models) 

The first of these assumptions cannot be made without knowledge of 
specific instances of designing including knowledge about the novelty and 
complexity of the design task. Staying on the model level rather than the 
instance level, our working assumption is that every elementary step oc-
curs only once within the same iteration. This assumption is used for each 
of the three models, and will be revisited in the discussion of results. 
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The second assumption is similarly based on task- and designer-specific 
knowledge that is not available at this general level. However, in the case 
of RUP, Kruchten (2004, p. 133) states that there are three typical scenari-
os regarding the number of iterations for each of the four phases within 
RUP (phase 1: inception; phase 2: elaboration; phase 3: construction; 
phase 4: transition; see Table 4). These scenarios are shown in Table 7. 

Table 7 The number of phase iterations in three typical scenarios of RUP (Kruch-
ten 2004, p. 133) 

 Scenario 1 (S1) Scenario 2 (S2) Scenario 3 (S3) 
Phase 1 0 1 1 
Phase 2 1 2 3 
Phase 3 1 2 3 
Phase 4 1 1 2 

 
For the Systematic Approach and DFSS-ICOV no concrete scenarios 

are detailed in the literature. Based on the high-level structural similarity 
of our three models (as shown in Section 2), an initial working assumption 
is that the scenarios in Table 7 will be used across all three models. We 
will revisit this assumption in the discussion of results. 

Applying the three generic scenarios to each model of designing pro-
duces the datasets shown in Table 8. 

Table 8 The number of steps produced by applying the three scenarios to each 
model of designing 

 Systematic 
Approach 

RUP DFSS-ICOV 

Scenario 1 (S1) 154 185 70 
Scenario 2 (S2) 235 278 103 
Scenario 3 (S3) 302 363 132 

3.3 Quantitative Analysis 

Having pre-processed the models of designing as sequences of steps, each 
of which produces an FBS design issue, allows applying cumulative occur-
rence analysis (Pourmohamadi 2010). This analysis has previously been 
applied to coded design protocols where designing is represented as a se-
quence of segments each producing one ontological design issue (Kannen-
giesser et al. 2013). The cumulative occurrence (c) of design issue (x) at 
design step (n) is defined as 𝑐 =    𝑥!!

!!!  where (xi) equals 1 if design step 
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(i) is coded as (x) and 0 if design step (i) is not coded as (x). Plotting the 
results of this equation on a graph with the design steps (n) on the horizon-
tal axis and the cumulative occurrence (c) on the vertical axis will visualise 
the occurrence of the design issues. Figure 2 shows a general representa-
tion of such a graph. 

 
Fig. 2 Graphical representation of the cumulative occurrence of design issues 

across design steps 

Drawing on Gero et. al (2014), four measures are used for analysing the 
cumulative occurrence-based representations of the different models of 
designing: 

• Slope: The measure represents the rate at which design issues 
are generated. 

• First occurrence at start: This measure indicates whether design 
issues first occur near the start of designing or at a later stage. 

• Continuity: This measure indicates whether design issues occur 
throughout designing or only up to a certain point. 

• Linearity: This measure indicates whether the speed at which 
design issues are generated is constant. It is measured using the 
coefficient of determination (R2): If R2 is at least 0.95, the graph 
is linear. 

All of these measures are independent of the number of design steps. 
This allows comparing models of designing that have different levels of 
detail and different numbers of iterations. 

4. Simulation Results 
In this Section we present the measures we derived from analysing the 
three models of designing. These measures are presented in Tables 9 to 14. 
In addition, to allow readers to carry out their own qualitative assessments, 
we also provide the raw data in the form of graphs representing the cumu-
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lative occurrence of design issues for scenario S2. These graphs are shown 
in Figures 3, 4 and 5. The vertical lines in these Figures separate the four 
phases in each model. They help in locating the occurrence of design is-
sues within the respective model of designing, which is useful for deriving 
the measures of “first occurrence at start” and “continuity”. 

 
Fig3 Cumulative occurrence of design issues in the Systematic Approach (for the 

“typical” scenario S2) 
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Fig4 Cumulative occurrence of design issues in the Rational Unified Process (for 

the “typical” scenario S2) 
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Fig5 Cumulative occurrence of design issues in DFSS-ICOV (for the “typical” 

scenario S2) 

Table 9 Requirement issues 

Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1* 
S2 
S3 

 
---	
  
0.038 
0.036 

 
---	
  
0.966 
0.977 

 
Yes 
Yes 
Yes 

 
No 
No 
No 

 
---	
  

Yes 
Yes 

RUP* 
S1, S2, 
S3 

--- --- Yes No --- 

DFSS-
ICOV* 
S1, S2, 
S3 

 
--- 

 
--- 

 
Yes 

 
No 

 
--- 

* No statistical results produced due to small dataset (< 10 data points) 
 

 

Table 10 Function issues 
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Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1 
S2 
S3 

 
0.118 
0.127 
0.122 

 
0.924 
0.947 
0.948 

 
Yes 
Yes 
Yes 

 
No 
No 
No 

 
No 
No 
No 

RUP 
S1 
S2 
S3 

 
0.096 
0.117 
0.114 

 
0.810 
0.860 
0.874 

 
Yes 
Yes 
Yes 

 
No 
No 
No 

 
No 
No 
No 

DFSS-
ICOV 
S1* 
S2 
S3 

 
 
--- 
0.115 
0.101 

 
 
--- 
0.806 
0.820 

 
 

Yes 
Yes 
Yes 

 
 

No 
No 
No 

 
 

---	
  
No 
No 

* No statistical results produced due to small dataset (< 10 data points) 
 

Table 11 Expected behaviour issues 

Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1 
S2 
S3 

 
0.207 
0.217 
0.210 

 
0.899 
0.924 
0.915 

 
Yes 
Yes 
Yes 

 
No 
No 
No 

 
No 
No 
No 

RUP 
S1 
S2 
S3 

 
0.157 
0.154 
0.153 

 
0.978 
0.981 
0.981 

 
Yes 
Yes 
Yes 

 
No 
No 
No 

 
Yes 
Yes 
Yes 

DFSS-
ICOV 
S1* 
S2 
S3 

 
 
---	
  
0.155 
0.143 

 
 
---	
  
0.889 
0.888 

 
 

Yes 
Yes 
Yes 

 
 

No 
No 
No 

 
 

---	
  
No 
No 

* No statistical results produced due to small dataset (< 10 data points) 
 

 

 

Table 12 Structure behaviour issues 
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Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1** 
S2** 
S3** 

 
0.065 
0.065 
0.065 

 
0.959 
0.982 
0.989 

 
No 
No 
No 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

RUP 
S1** 
S2** 
S3** 

 
0.127 
0.121 
0.120 

 
0.972 
0.978 
0.980 

 
No 
No 
No 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

DFSS-
ICOV 
S1* 
S2* 
S3** 

 
 
---	
  
--- 
0.113 

 
 
--- 
--- 
0.919 

 
 

No 
No 
No 

 
 

Yes 
Yes 
Yes 

 
 

--- 
--- 
No 

* No statistical results produced due to small dataset (< 10 data points) 
** The initial design steps of the protocol are ignored in slope and linearity 
calculations to take into account that the first occurrence is not at the start 

 

Table 13 Structure issues 

Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1* 
S2* 
S3* 

 
0.422 
0.418 
0.419 

 
0.977 
0.978 
0.979 

 
No 
No 
No 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

RUP 
S1* 
S2* 
S3* 

 
0.394 
0.390 
0.386 

 
0.997 
0.999 
0.999 

 
No 
No 
No 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

DFSS-
ICOV 
S1* 
S2* 
S3* 

 
 
0.342 
0.384 
0.376 

 
 
0.967 
0.994 
0.996 

 
 

No 
No 
No 

 
 

Yes 
Yes 
Yes 

 
 

Yes 
Yes 
Yes 

* The initial design steps of the protocol are ignored in slope and linearity 
calculations to take into account that the first occurrence is not at the start 
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Table 14 Description issues 

Model of 
design-
ing 

Slope R2 First occur-
rence at start 

Continuity Linearity 

Sys. App. 
S1 
S2 
S3 

 
0.196 
0.198 
0.192 

 
0.968 
0.972 
0.976 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

RUP 
S1* 
S2* 
S3* 

 
0.251 
0.241 
0.243 

 
0.991 
0.996 
0.997 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 
Yes 

DFSS-
ICOV 
S1 
S2 
S3 

 
 
0.340 
0.316 
0.325 

 
 
0.979 
0.984 
0.984 

 
 

Yes 
Yes 
Yes 

 
 

Yes 
Yes 
Yes 

 
 

Yes 
Yes 
Yes 

* The initial design steps of the protocol are ignored in slope and linearity 
calculations to take into account that the first occurrence is not at the start 

 
As a first observation, we note that there are no or only small differ-

ences among the three scenarios within each model of designing. All quali-
tative measures (first occurrence at start, continuity, and linearity) are the 
same for S1, S2 and S3 of each model. Differences in slope are not signifi-
cant across the three scenarios. 

When comparing the three models of designing with each other, we can 
make the following observations: 

• First occurrence at start: In all three models, requirement is-
sues, function issues, expected behaviour issues and description 
issues occur at the start (or in phase 1) of the design process. 
And in all three models, structure behaviour issues and structure 
issues occur later (in phase 2). 

• Continuity: The cumulative occurrence of requirement issues, 
function issues and expected behaviour issues is discontinuous 
in all three models. Structure behaviour issues, structure issues 
and description issues are continuous in all three models. 

• Linearity: The cumulative occurrence of function issues in all 
three models is non-linear, whereas the cumulative occurrence 
of structure issues and description issues in all three models is 
linear. For expected behaviour issues and structure behaviour 
issues, the results are inconsistent across the models. 

• Slope: Using one-way ANOVA tests, a common slope across 
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the three models of designing was found only for function is-
sues (F2,5 = 5.224, p = 0.06). No commonalities in slope were 
found for requirement issues (insufficient data), expected be-
haviour issues (F2,5 = 101.546, p < 0.05), structure behaviour is-
sues (F2,4 = 319.341, p < 0.05), structure issues (F2,6 = 11.889, p 
< 0.05) and description issues (F2,6 = 220.841, p < 0.05). 

5. Discussion of Results 

The results can be discussed in terms of the commonalities found across 
the three models of designing and in terms of the assumptions underlying 
the simulation models. 

5.1 Identifying Commonalities across the Three Models of Designing 

Our analysis has uncovered a number of commonalities among the three 
models of designing, independent of the number of iterations in each mod-
el (see Section 5.2 for an explanation of why they are independent). Table 
15 summarises our findings, using the “+” symbol to indicate the existence 
of a commonality. A common slope was identified only for function is-
sues. Commonalities regarding the first occurrence of design issues near 
the start were found for requirements issues, function issues, expected be-
haviour issues and description issues. Commonalities regarding the conti-
nuity of the graph were found for structure behaviour issues, structure is-
sues and description issues. The commonality of linearity was identified 
for structure issues and description issues. 

Table 15 Summary of commonalities 

Design issue Com-
mon 
Slope 

First occur-
rence at 

start 

Continuity Line-
arity 

Require-
ment  +   

Function + +   
Expected 
Behaviour  +   

Structure 
Behaviour   +  

Structure   + + 
Description  + + + 
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Some of the commonalities are consistent with the general goals of each 

of the four phases of the models, as introduced in Section 2. In the three 
models, requirement issues, function issues, expected behaviour issues and 
description issues start occurring in phase 1 as they are needed to define 
and document the design problem. The occurrence of these issues, except 
for description issues that continue to occur until the end, tends to diminish 
later as the focus of designing shifts towards possible design solutions. 
Structure issues and structure behaviour issues start occurring later, and 
continue to occur until the final design solution is determined, validated 
and documented. There is no common slope except for function issues. 

5.2 Revisiting Assumptions for the Simulation Models 

The results of applying our approach shed some light on the validity of the 
assumptions used for constructing the simulation models (see Section 3.2). 

Our first assumption was that every design step occurs only once within 
the same iteration. In common design practice this assumption is not real-
istic, because incomplete knowledge and design complexity often require 
repeating the same or similar design activities multiple times (Wynn et al. 
2007). However, these task- and designer-specific variables cannot be tak-
en into account for analysing models of designing that are independent of 
particular instances. Therefore the validity of the one-execution-per-step 
assumption must be based on its usefulness in analysing and comparing 
different models rather than its relation to the practice of designing. In-
creasing the number of executions per step, uniformly across all steps of a 
model, would not lead to changes in the four measures except for changed 
values for slopes. Even if the number of executions can vary for different 
steps in a model, only the shape of the graph would be affected in terms of 
its linearity or non-linearity, not a change from one shape to another. As a 
result, our assumption of one execution per step seems to be a useful and 
valid choice. 

Our second assumption was related to the number of iterations of the 
different phases within a model of designing. We took Kruchten’s (2004) 
three “typical” scenarios for RUP, each of which defines different numbers 
of iterations for the four phases, and applied them to the other models. The 
results show that the behaviour of the cumulative occurrence graphs in all 
three models of designing did not vary for the different scenarios. We 
might therefore simplify the assumption to include only one simple scenar-
io where there are no iterations for any of the four phases. This would also 
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facilitate the application of our approach to models that cannot be mapped 
onto the 4-phase process structure. For example, the VDI-2221 model 
(VDI 1985) has seven phases, and some variants of DFSS such as 
DMADV (“Define-Measure-Analyse-Design-Verify”) and IDDOV (“Iden-
tify-Define-Design-Optimize-Validate”) have five phases. 

6. Conclusion 

This paper proposed a quantitative approach for the analysis of domain-
specific models of designing. Its application to three models of designing 
demonstrates its applicability to domains as different as engineering, soft-
ware and service design. Based on its ontological foundations, the ap-
proach allows comparisons between models from different design do-
mains. The comparison of the models analysed in this paper shows that 
there are some strong commonalities that provide support for the hypothe-
sis that designing is an act that is independent of the domain of its applica-
tion. This has important implications for design education: If designing is 
foundational and domain-independent and different to science and humani-
ties, then consideration should be given to teaching design in parallel with 
science and humanities. 

The findings presented in this paper provide a starting point for future 
research. This includes the application of the method to more models of 
designing, which may establish further quantitative evidence for the exist-
ence of commonalities across different models and domains. These results 
could be compared with empirical research, as there are many protocol 
studies available using the same FBS design issue scheme. Such compari-
sons would provide the basis to examine differences between models of 
designing and designing as practised. 
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Appendix A – The Situated FBS Framework 

 
Fig. A1 The situated FBS framework 

 
Explanation of symbols: 
Fei: Expected Function 
Fi: Interpreted Function 
Fe: External Function 
FRe: Requirement on Function 
 
Bei: Expected Behaviour 
Bi: Interpreted Behaviour 
Be: External Behaviour 
BRe: Requirement on Behaviour 
 
Sei: Expected Structure 
Si: Interpreted Structure 
Se: External Structure 
SRe: Requirement on Structure 
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Appendix B - Pahl and Beitz’ Systematic Approach 

Table B1.  Phase 1: Task Clarification (numbers refer to sFBS process la-
bels; page numbers refer to Pahl and Beitz (2007)) 

 

Activity Design 
issue 

sFBS 
step 

Comments 

1.1 Define basic 
market demands 

R 
 
 
 
F, Be 
 
 
 
 
 
D, D 

1 
 
 
 
4, 5 
 
 
 
 
 
18, 
17 

-a “task description” is given in the ex-
ternal world, describing the product’s 
desired “functionality and performance” 
(p. 145) 
-generated internally: “Basic require-
ments are always implicit requirements, 
i.e. they are not articulated by the cus-
tomer.” (p. 150) 
-can be related to F and B in new prod-
uct development 
-all requirements are compiled as a re-
quirements list that is produced in the 
external world 

1.2 Define attrac-
tiveness demands 
of the market seg-
ment 

F, Be 
 
 
 
 
D, D 

4, 5 
 
 
 
 
18, 
17 

-generated internally: “Attractiveness 
requirements are again implicit require-
ments.” (p. 151) 
-can be related to F and B in new prod-
uct development 
-all requirements are compiled as a re-
quirements list that is produced in the 
external world 

1.3 Document cus-
tomer-specific 
technical perfor-
mance require-
ments 

R 
 
 
 
 
 
 
D 

2 
 
 
 
 
 
 
17 

-given in the external world: “Technical 
performance requirements are explicit 
requirements. They are articulated by 
the customer and can usually be speci-
fied precisely.” (pp. 150) 
-“performance” corresponds to B; see 
also the examples on p. 151 
-all requirements are compiled as a re-
quirements list that is produced in the 
external world 

1.4 Refine and 
extend the re-
quirements using 
the checklist and 
scenario planning 

F, Be, 
Be 
 
D, D 

4, 5, 
10 
 
18, 
17 

-these requirements are internally devel-
oped; no specific guidance from external 
world 
-all requirements are compiled as a re-
quirements list that is produced in the 
external world 

1.5 Determine F, Be 7, 8 -distinction between demands and wish-
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demands and 
wishes 

 
 
D, D 

 
 
18, 
17 

es is about formulating a design state 
space (focussing) 
-demands/wishes distinction is included 
in the requirements list in the external 
world: see example on p. 154 

 
Table B2.  Phase 2: Conceptual Design (numbers refer to sFBS process 

labels; page numbers refer to Pahl and Beitz (2007)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

2.1 Abstract to 
identify the essen-
tial problems 

F 20 -related to F based on the external re-
quirements list: “Here the task is to ana-
lyse the requirements list with respect to 
the required function and essential con-
straints in order to confirm and refine 
the crux of the problem.” (p. 164) “[…] 
the final formulation can be derived in a 
way that does not prejudice the solution, 
i.e. is solution-neutral, and at the same 
time turns it into a function.” (p. 165) 

2.2 Establish func-
tion structures: 
overall function – 
subfunctions 

F 
 
F 

4 
 
7 

-internal generation of new (sub-) func-
tions 
-prioritization of functions: “It is useful 
to start by determining the main flow in 
a technical system […]. The auxiliary 
flows should only be considered later.” 
(p. 171) “The search for solutions […] 
then focuses on the subfunctions that are 
essential for the solution and on which 
the solutions of other subfunctions de-
pend […].” (p. 181) 

2.3 Search for 
working principles 
that fulfil the sub-
functions 

 
 
 
 
Be 
 
S 
 
Be, S, 
D, D, 
S, Be, 
Bs, Be 
 
 

 
 
 
 
10 
 
6 
 
8, 9, 
12, 
17, 
13, 
19, 
14, 5 

-“Only the combination of the physical 
effect with the geometric and material 
characteristics […] allows the principle 
of the solution to emerge. This interrela-
tionship is called the working principle 
[…].” (p. 40) 
-involves generating physical effects (B) 
based on subfunctions (F) 
-involves generating working surfaces 
(S) and types of materials (S), both can 
be expressed as S variables 
-may involve incrementally focusing on 
B and S, producing, interpreting and 
analysing external S: “[…] the stepwise 
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R 

 
 
 
 
 
 
 
 
19, 3 

generation of working principles, 
through the search for physical effects 
and the subsequent form design features, 
is often integrated mentally by produc-
ing sketches of solutions. This is be-
cause designers think more in configura-
tions and representation of principles 
than in physical equations.” (p. 189) 
-involves interpreting relevant behav-
iours in the requirements list (B) and, if 
available, structure (SRe): “[Extensive 
solution fields] should be reduced as 
soon as feasible working principles 
emerge by checking against the demands 
in the requirements list.” (p. 189) 

2.4 Combine 
working principles 
into working struc-
tures 

 
 
 
Be 
 
 
S 

 
 
 
10 
 
 
6 

-“The combination of several working 
principles results in the working struc-
ture of a solution.” (p. 40) 
-involves creating sets of working prin-
ciples “to fulfil the overall function” (p. 
184) 
-involves creating sets of working sur-
faces (S) and types of materials (S) 

2.5 Select suitable 
combinations 

Be, S 8, 9 -“selection” here corresponds to focus-
sing on B and S 

2.6 Firm up into 
principle solution 
variants 

Be, S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D, D 

10, 
11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12, 
17 

-involves generating more information 
about the working principles, through 
additional variables and some values for 
B and S: “The most important properties 
of the proposed combination of princi-
ples must first be given a much more 
concrete qualitative, and often also a 
rough quantitative, definition.” (p. 190) 
“The fulfilment of the technical function 
alone does not complete the task of de-
signers […]. […] In addition, the solu-
tion of technical tasks imposes certain 
constraints or requirements resulting 
from ergonomics, production methods, 
transport facilities, the intended opera-
tion, etc. […].” (p. 43) “It is advisable to 
consider these guidelines [a list of gen-
eral constraints] even during the concep-
tual phase.” (p. 44) 
-produces models and sketches (S) and 
calculations and tests/simulations (B) in 



 30 

the external world (p. 190) 
2.7 Evaluate vari-
ants against tech-
nical and econom-
ic criteria 

Be 
 
 
 
Be, Be 
 
 
Be 
 
S 
 
 
 
 
 
 
 
Bs 
 
 
 
 
-- 
S, S, 
F, F 

19 
 
 
 
5, 8 
 
 
8 
 
13 
 
 
 
 
 
 
 
14 
 
 
 
 
15 
6, 9, 
16, 7 

-“Identifying evaluation criteria” (p. 
192) involves interpretation of external 
B: “This step is based, first of all, on the 
requirements list.” (p. 192) 
-involves generating and focussing on 
additional B using general checklist (p. 
193) 
-“Weighting the evaluation criteria” (p. 
194) corresponds to focussing on B 
-“Compiling parameters” (p. 194) in-
volves gathering data from the results of 
step 2.6: “Whatever quantitative infor-
mation is available at this stage should 
also be included. Such quantitative data 
generally result from the step we have 
called “firming up into principle solution 
variants”.” (p. 194) 
-“Assessing values” uses ratings such as 
“the 0-4 scale proposed in VDI Guide-
line 2225” (p. 195); “Determining over-
all value” is “a matter of simple addi-
tion” (p. 197) 
-“Comparing concept variants” (p. 197) 
-may involve generating and focussing 
on new solutions, through “transfer of 
better subsolutions from other variants” 
(p.198), and deriving and focussing on 
additional functions through fault-tree 
analysis (see example in Fig. 10.7, p. 
525) 

 
Table B3.  Phase 3: Embodiment Design (numbers refer to sFBS process 

labels; page numbers refer to Pahl and Beitz (2007)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

3.1 Identify em-
bodiment-
determining re-
quirements 

F, Be, 
R, F, 
Be, S 

20, 
19, 3, 
7, 8, 
9 

-involves interpretation of the require-
ments list in the external world, and 
selection (focussing): “Starting with the 
principle solution, and using the re-
quirements list, the first step is to identi-
fy those requirements that have a crucial 
bearing on the embodiment design.” (p. 
228) 

3.2 Produce scale D 12 -involves creation of external S 
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drawings of spatial 
constraints 
3.3 Identify em-
bodiment-
determining main 
function carriers 

S 9 -involves selection (focussing) of S in 
terms of “the overall embodiment-
determining main function carriers” (p. 
228) 

3.4 Develop pre-
liminary layouts 
and form designs 
for the embodi-
ment-determining 
main function car-
riers 

S 
 
 
D 

11 
 
 
12 

-involves developing S in terms of the 
“general arrangement, component 
shapes and materials” (p. 230) 
-involves producing external representa-
tions of S: “The representation of the 
spatial constraints and the embodiment 
is now generally obtained by creating a 
full 3-D digital model.” (p. 231) 

3.5 Select suitable 
preliminary lay-
outs 

S 11 -this selection is part of the B-to-S trans-
formation 

3.6 Develop pre-
liminary layouts 
and form designs 
for the remaining 
main function car-
riers 

S 
 
S 
 
D 

9 
 
11 
 
12 

-involves focussing on “the remaining 
main function carriers” (p. 230) 
-involves developing S for these func-
tion carriers 
-involves producing external representa-
tions of S: “The representation of the 
spatial constraints and the embodiment 
is now generally obtained by creating a 
full 3-D digital model.” (p. 231) 

3.7 Search for so-
lutions to auxiliary 
functions 

S 
 
 
S 

9 
 
 
6 

-involves focussing in terms of select-
ing, “where possible, […] known solu-
tions.” (p. 230) 
-may involve generating “special solu-
tions, using the procedures already de-
scribed in Section 3.2 [including creativ-
ity techniques such as brainstorming, 
synectics etc.] and Chapter 6.” (p. 230) 

3.8 Develop de-
tailed layouts and 
form designs for 
the main function 
carriers ensuring 
compatibility with 
the auxiliary func-
tion carriers 

S 
 
D 

11 
 
12 

-involves developing S for the main 
function carriers 
-involves producing external representa-
tions of S: “The representation of the 
spatial constraints and the embodiment 
is now generally obtained by creating a 
full 3-D digital model.” (p. 231) 

3.9 Develop de-
tailed layouts and 
form designs for 

S 
 
D 

11 
 
12 

-involves developing S for the auxiliary 
function carriers 
-involves producing external representa-
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the auxiliary func-
tion carriers and 
complete the over-
all layouts 

tions of S: “The representation of the 
spatial constraints and the embodiment 
is now generally obtained by creating a 
full 3-D digital model.” (p. 231) 

3.10 Evaluate 
against technical 
and economic cri-
teria 

S, Bs 13, 
14, 
15 

-must involve interpretation of the ex-
ternal model, and analysis and compari-
son 

3.11 Optimise and 
complete form 
designs 

S 
 
D 

11 
 
12 

-involves changing S “by eliminating 
the weak spots” (p. 231) 
-involves producing external representa-
tions of S: “The representation of the 
spatial constraints and the embodiment 
is now generally obtained by creating a 
full 3-D digital model.” (p. 231) 

3.12 Check for 
errors and disturb-
ing factors 

S, Bs 
 
 
S, S, S 

13, 
14, 
15 
13, 6, 
9 

-must involve interpretation of the ex-
ternal model, and analysis and compari-
son 
-may involve generating and focussing 
on new S as a result of fault-tree analy-
sis (p. 526) 

3.13 Prepare pre-
liminary parts lists 
and production 
documents 

D 12 -creates documentation (S) in the exter-
nal world 

 
Table B4.  Phase 4: Detail Design (numbers refer to sFBS process labels; 

page numbers refer to Pahl and Beitz (2007)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

4.1 Finalise details; 
complete detail 
drawings 

S 
 
 
 
 
D 

11 
 
 
 
 
12 

-involves optimisation of S by selecting 
“the most suitable materials […], at 
cost-effectiveness and at ease of produc-
tion, with due attention being paid to 
standards […].” (p. 437) 
-involves generating S in the external 
world, “comprising the detailed drawing 
of components, and the detailed optimi-
sation of shapes, materials, surfaces, 
tolerances and fits.” (p. 437) 

4.2 Integrate into 
overall layout 
drawings, assem-
bly drawings and 
parts lists 

D 12 -involves a re-representation of external 
S 
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4.3 Complete pro-
duction documents 
with production, 
assembly, transport 
and operating in-
structions 

D 12 -involves a re-representation of external 
S 

4.4 Check all doc-
uments for stand-
ards, completeness 
and correctness 

S, Bs 13, 
14, 
15 

-must involve interpretation of the ex-
ternal documents, and analysis and 
comparison 

Appendix C - Rational Unified Process 

Table C1.  Phase 1: Inception (numbers refer to sFBS process labels; page 
numbers refer to Kruchten (2004)) 

 

Activity Design 
issue 

sFBS 
step 

Comments 

1.1 Analyze the 
problem 

R 
 
F, Be 

1 
 
4, 5 

-we assume some expression of a need to 
initiate designing 
-involves generating internal F and B, 
through “gain[ing] agreement on a 
statement of the problem we are trying to 
solve” (p. 164) and “identify[ing] the 
boundaries and constraints of the sys-
tem” (p. 164) 

1.2 Understand 
stakeholder needs 

R, R 1, 2 -involves eliciting external requirements 
on F and B, through “gather[ing] stake-
holder requests and […] obtaining a clear 
understanding of the real needs of the 
users and stakeholders of the system” (p. 
166) 

1.3 Define the 
system 

F 
 
 
D 

4 
 
 
18 

-involves generating F by “establish[ing] 
the set of system features to be consid-
ered for delivery” (p. 166) 
-involves producing external F “to set 
realistic expectations with the stakehold-
ers on what features will be delivered” 
(p. 166) 

1.4 Manage the 
scope of the sys-
tem 

F, Be 
 
D, D 

7, 8 
 
18, 
17 

-involves selecting or focussing on ex-
pected F and B 
-involves producing external F and B as 
“requirements attributes” (p. 166) 

1.5 Refine the F, Be 4, 10 -involves generating F and B, through 
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system definition  
 
 
 
 
D, D 

 
 
 
 
 
18, 
17 

establishing “the functionality of the 
system […] and other important re-
quirements, such as nonfunctional re-
quirements, design constraints, and so 
forth” (p. 166) 
-involves producing external F and B, 
“to come to an agreement with the cus-
tomer” (p. 166) 

 
Table C2.  Phase 2: Elaboration (numbers refer to sFBS process labels; 

page numbers refer to Kruchten (2004)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

2.1 Decide which 
use cases and sce-
narios will drive the 
development of the 
architecture 

F 
 
 
F 

20 
 
 
7 

-involves interpreting external F, by 
“discussing an initial use-case view” 
(p. 251) 
-involves “determin[ing] which use 
cases and scenarios should be focused 
on in this iteration” (p. 251) 

2.2 Understand this 
driver in detail and 
inspect the results 

F 
 
D 

4 
 
18 

-involves detailing and “restructur[ing] 
the use-case model as a whole” 
-involves producing external F as “use-
case model and supplementary specifi-
cation” to be “reviewed and approved” 
(p. 251) 

2.3 Reconsider use 
cases and risks 

F 
 
F 

20 
 
7 

-involves interpreting external F by 
“revisit[ing] the use-case view” 
-involves focussing by “select[ing] the 
set of use cases and scenarios to be 
analyzed, designed, and implemented 
in the current iteration.” (p. 251) 

2.4 Prototype the 
user interface 

D 
 
 
 
F, F 

18 
 
 
 
20, 7 

-involves producing external F by 
“build[ing] a user-interface prototype 
to get feedback from prospective users” 
(p. 252); 
-we presume that this feedback may 
lead to a reformulation of F 

2.5 Find obvious 
classes, do initial 
subsystem parti-
tioning, and look at 
use cases in detail 

Be 
 
 
 
 
S 
 
 

10 
 
 
 
 
6 
 
 

-involves generating expected B based 
on expected F by “identif[ying] the 
analysis mechanisms that constitute 
common solutions to common prob-
lems during analysis” (p. 252) 
-involves generating S by “start[ing] 
finding classes or objects for this itera-
tion’s use cases or scenarios” (p. 252) 
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D, D 17, 12 -involves producing external B and S 
as a “software architecture document” 
(p. 252) 

2.6 Refine and ho-
mogenize classes 
and identify archi-
tecturally signifi-
cant ones; inspect 
results 

S 
 
S 
 
 
 
D 

11 
 
9 
 
 
 
12 

-involves synthesizing S by “refin[ing] 
the classes identified” (p. 252) 
-involves focussing on S by “iden-
tif[ying] a number of classes that 
should be considered architecturally 
significant” (p. 252) 
-involves producing external S by “in-
clud[ing the architecturally significant 
classes] in the logical view (Artifact: 
Software Architecture Document)” (p. 
252) 

2.7 Consider the 
low-level package 
partitioning 

S 11 -involves synthesizing S by “or-
ganiz[ing] some of the classes into de-
sign packages” (p. 252) 

2.8 Adjust to the 
implementation 
environment, de-
cide the design of 
the key scenarios, 
and define formal 
class interfaces; 
inspect results 

Be, S 
 
 
Be, S 
 
 
S 
 
 
 
D, D 

5, 6 
 
 
8, 9 
 
 
11 
 
 
 
17, 12 

-involves generating B and S as con-
straints imposed by “the implementa-
tion environment” (p. 253) 
-involves focusing on B and S to pro-
vide “detailed requirements that are 
then put on each object” (p. 253) 
-involves synthesizing S by “merg[ing 
the detailed requirements] into con-
sistent and formal interfaces on their 
classes” (p. 253) 
-involves producing external B and S 
by “updat[ing] the logical view accord-
ingly” (p. 253) 

2.9 Consider con-
currency and distri-
bution of the archi-
tecture 

S 11 -involves synthesizing S based on “the 
collaborating objects in interaction 
diagrams” (p. 253) 

2.10 Inspect the 
architectural design 

S, Bs 13, 
14, 15 

-likely to involve interpreting external 
S, and deriving and evaluating B 

2.11 Consider the 
physical packaging 
of the architecture 

Be, S 5, 6 -involves generating B and S by 
“defin[ing] the implementation view” 
(p. 253) 

2.12 Plan the inte-
gration 

F 
 
 
S 

7 
 
 
9 

-involves focussing on F by “stud[ying] 
the use cases that are to be implement-
ed in this iteration” (p. 253) 
-involves focussing on S by “defin[ing] 
the order in which subsystems should 
be implemented” (p. 253) 
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2.13 Plan integra-
tion tests and sys-
tem tests 

Be 
 
 
 
 
 
 
 
D 

10 
 
 
 
 
 
 
 
17 

-involves generating expected B based 
on expected F by “plan[ning] the sys-
tem tests and the integration tests, se-
lecting measurable testing goals 
[which] could be expressed in terms of 
the ability to execute a use-case scenar-
io with a certain response time or under 
specified load” (p. 253) 
-involves producing external B as a 
“test plan” (p. 254) 

2.14 Implement the 
classes and inte-
grate 

S, D, 
S, Bs 

11,12, 
13,14, 
15 

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving 
and evaluating B, by “cod[ing] and 
unit-test[ing] the classes identified in 
the architectural design” (p. 254) 

2.15 Integrate the 
implemented parts 

S, D, 
S, Bs 

11,12, 
13,14, 
15 

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving 
and evaluating B, by “integrat[ing] the 
subsystems into an executable architec-
tural prototype [and then testing it]” (p. 
254) 

2.16 Assess the 
executable architec-
ture 

S, D, 
S, Bs 

11,12, 
13,14, 
15 

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving 
and evaluating B, as “[o]nce the whole 
system […] has been integrated, the 
System Tester tests the system” (p. 
254) 

 
Table C3.  Phase 3: Construction (numbers refer to sFBS process labels; 

page numbers refer to Kruchten (2004)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

3.1 Plan system-
level integration 

S 
 
 
 
D 

9 
 
 
 
12 

-involves focussing on S by selecting 
“the order in which subsystems are to be 
put together to form a working and test-
able configuration” (p. 255) 
-involves producing external S as “doc-
umented in the Build Plan” p. 256) 

3.2 Plan and de-
sign system-level 
test 

Be 
 
 
Be 
 
 
D 

10 
 
 
5 
 
 
17 

-involves generating expected B, pre-
sumably based on expected F (the use-
case scenarios) 
-involves generating B from “preceding 
iterations, which could be modified to be 
reused” (p. 256) 
-involves producing external B as “test 
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scripts” (p. 256) 
3.3 Refine use-
case realizations 

S 
 
 
S 
 
S 

11 
 
 
6 
 
9 

-involves synthesizing S by “refin[ing] 
the classes identified in previous itera-
tions” (p. 256) 
-may involve generating S, as “[c]lasses 
may need to be added” (p. 256) 
-may involve focussing on S, as 
“[c]hanges to classes may require a 
change in subsystem partitioning” (p. 
256) 

3.4 Plan and de-
sign integration 
tests at the sub-
system and sys-
tem levels 

Be 
 
F, Be 
 
 
 
 
Be 

19 
 
7, 8 
 
 
 
 
10 

-involves interpreting external B as the 
“Test Plan” (p. 256) 
-involves focussing on F and B: “The 
Designer identifies the functionality that 
will be tested together and the stubs and 
drivers that must be developed to support 
the integration tests” (p. 256) 
-involves generating B, presumably 
based on expected F and B (“based on 
the input from the Test Designer”, p. 
256) by “develop[ing] the stubs and 
drivers” (p. 256) 

3.5 Develop code 
and test unit 

S, D, 
S, Bs 
 
 
 
S, Be 

11,12, 
13,14, 
15 
 
 
9, 8 

-involves synthesizing and externalizing 
S, then interpreting it and deriving and 
evaluating B, by “implement[ing] the 
classes in the Implementation Model 
[and fixing] defects” (p. 256) 
-may involve reformulation of S and B 
in terms of “design changes based on 
discoveries made in implementation” (p. 
256) 

3.6 Plan and im-
plement unit test 

Be 10 -involves generating expected B, pre-
sumably based on expected F 

3.7 Test unit with-
in a subsystem 

S, Bs 13,14, 
15 

-involves interpreting external S and 
deriving and evaluating B 

3.8 Integrate a 
subsystem 

S, D 11, 12 -involves synthesizing S and producing 
external S by “bringing together com-
pleted and stubbed classes that constitute 
a build” (p. 257) 

3.9 Test a subsys-
tem 

S, Bs 
 
D 

13,14, 
15 
17 

-involves interpreting external S and 
deriving and evaluating B 
-involves producing external B by 
“log[ging] the defects for arbitration to 
decide when they are to be fixed” (p. 
257) 
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3.10 Release a 
subsystem 

D 12 -involves producing external S by “re-
leas[ing] the tested version of the subsys-
tem […] into an area where it becomes 
visible, and usable, for system-level in-
tegration” (p. 257) 

3.11 Integrate the 
system 

S, D 11, 12 -involves synthesizing S and producing 
external S by “add[ing] subsystems and 
creat[ing] a build that is handed over to 
the Integration Testers” (p. 257) 

3.12 Test integra-
tion 

S, Bs 
 
D 

13,14, 
15 
17 

-involves interpreting external S and 
deriving and evaluating B 
-involves producing external B by 
“log[ging] the defects” (p. 257) 

3.13 Test the sys-
tem 

S, Bs 13,14, 
15 

-involves interpreting external S and 
deriving and evaluating B 

 
Table C4.  Phase 4: Transition (numbers refer to sFBS process labels; page 

numbers refer to Kruchten (2004)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

4.1 Plan deploy-
ment 

D 17 -involves producing external B as the 
“beta test program” (p. 242) 

4.2 Develop sup-
port material 

D, D 18, 17 -involves producing external F and B by 
providing “information that will be re-
quired by the end user to install, operate, 
use, and maintain the delivered system” 
(p. 242) 

4.3 Produce de-
ployment unit 

D 12 -involves producing external S as the 
final software (p. 242) 

4.4 Beta test prod-
uct 

S, Bs 13,14, 
15 

-involves interpreting external S and 
deriving and evaluating B 

Appendix D - DFSS-ICOV 

Table D1.  Phase 1: Identify (numbers refer to sFBS process labels; page 
numbers refer to El-Haik and Roy (2005)) 

 

Activity Design 
issue 

sFBS 
step 

Comments 

1.1 Idea creation R 
 
F, F 

1 
 
4, 7 

-we assume some expression of a need to 
initiate designing 
-involves generating and focussing on F, 
by creating “a market vision, with an as-
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sessment of marketplace advantages” (p. 
83) 

1.2 Voice of the 
customer and 
business 

R, R 
 
 
F, Be 
 
 
 
 
 
Be 
 
F, Be 
 
 
D, D 

1, 2 
 
 
4, 5 
 
 
 
 
 
10 
 
7, 8 
 
 
18,17 

-involves interpreting F and B, by “ob-
tain[ing] customer needs and wants (p. 
84) 
-involves generating F and B, by “identi-
fy[ing] and fill[ing] gaps in customer-
provided requirements”, by “estab-
lish[ing] metrics for CTSs”, “quanti-
fy[ing] CTSs” and by “align[ing] with 
business objectives” (p. 84) 
-involves deriving B from F, by “trans-
lat[ing] the VOC to CTSs” (p. 84) 
-involves focussing on F and B, by “con-
duct[ing] risk assessment” (p. 84) and 
performing a Kano analysis (p. 118) 
-involves externalizing F and B, by pro-
ducing “a list of the voice of the customer 
(VOC)” (p. 84) and a HOQ 1 (p. 386) 

 
Table D2.  Phase 2: Conceptualize (numbers refer to sFBS process labels; 

page numbers refer to El-Haik and Roy (2005)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

2.1 Concept de-
velopment 

F, Be 
 
 
 
 
F, Be 
 
 
D, D 
 
S 
 
S 

16, 5 
 
 
 
 
7, 8 
 
 
18,17 
 
6 
 
9 

-involves deriving F from B, and gener-
ating B by “translat[ing] customer re-
quirements (CTSs or big Ys) to ser-
vice/process functional requirements” 
(p. 86) 
-involves focussing on F and B, by de-
termining “prioritized functional re-
quirements” (p. 114) 
-involves externalizing F and B, by pro-
ducing a HOQ 2 (p. 121) 
-involves generating S, by “generat[ing] 
design alternatives” (p. 87) 
-involves focussing on S, by “select[ing] 
a process or service conceptual design” 
(p. 87) using the Pugh selection method 

2.2 Preliminary 
design 

Be, S 
 
 
D, D, 
D 
S, Bs 

10,11 
 
 
18,17, 
12 
13,14 

-involves “determin[ing] a set of design 
parameters which will fulfill the FRs” 
(p. 122) 
-involves externalizing F, B and S, by 
producing a HOQ 3 (p. 127) 
-involves interpreting S and deriving 
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S, S 

15 
 
 
6, 9 

and evaluating B, by identifying the 
potential failure modes and effects with-
in an FMEA (p. 249) 
-involves generating and focussing on S, 
by “decid[ing] on design controls” (p. 
254) 

 
Table D3.  Phase 3: Optimize (numbers refer to sFBS process labels; page 

numbers refer to El-Haik and Roy (2005)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

3.1 Design optimi-
zation 

 
 
 
S, D 
 
 
 
S, Bs 
 
 
 
D 

 
 
 
11,12 
 
 
 
13,14 
15 
 
 
17 

One of the typical tools for this phase is 
suggested to be Design of Experiments 
(DOE) (p. 90) 
-involves synthesizing and externalizing 
S, by “vary[ing] the factors that can 
cause a change in the performance of y” 
(p. 264) and conducting experiments 
-involves interpreting S, and deriving 
and evaluating B, by collecting and ana-
lysing data from the experiments (p. 
277) 
-involves externalizing B, by using de-
sign scorecards (p. 90) 

 
Table D4.  Phase 4: Validate (numbers refer to sFBS process labels; page 

numbers refer to El-Haik and Roy (2005)) 
 

Activity Design 
issue 

sFBS 
step 

Comments 

4.1 Verification D 
 
S, Bs 
 
 
 
S 

12 
 
13,14 
15 
 
 
11 

-involves externalizing S, by executing 
“pilot tests” (p. 91) 
-involves interpreting S and deriving and 
evaluating B, by identifying the potential 
failure modes and effects within an 
FMEA (p. 91) 
-involves synthesizing S, by “refining” 
the service (p. 91) 

4.2 Launch readi-
ness 

D, D, 
D 

18,17 
12 

-involves externalizing F, B and S, by 
“change management message[s]” (p. 
406), “process capability modeling” (p. 
92) and “mistake proofing” (p. 92) 

 


