
 1

DRAFT

Is Designing Independent of Domain? Comparing
Models of Engineering, Software and Service Design

Udo Kannengiesser and John S Gero

This paper presents a quantitative method for analysing process models of design-
ing independently of the specific design domain. The method uses the situated
FBS framework as the basis for a simulation model of a designer acting according
to these models. The results of these simulations are sequences of design issues
that are analysed using cumulative occurrence graphs with associated quantitative
measures. The paper illustrates the approach by analysing and comparing three
models of designing from different domains: Pahl and Beitz’ model of engineering
design, the Rational Unified Process of software design, and a model of Design
for Six Sigma in service design. The quantitative results indicate some commonal-
ities across the different models. These commonalities are related to the first oc-
currence of design issues in the design process, and to the continuity and the rate
at which design issues are generated.

1. Introduction

Designing is a complex activity that has attracted a significant amount of
attention from different research domains, trying to demystify its manifold
processes. One of the biggest challenges is to define designing as a unique
activity while it is used in a vast range of domains such as engineering,
software, graphical interfaces, and electronics, to name a few. Understand-
ing the commonalities amongst different expressions of designing is a
foundational step in developing a universal understanding of design (Asi-
mow 1962; Lawson 1980; Cross 1982; Dym 1994; Visser 2009).

We hypothesise that designing is an act that is independent of the do-
main of its application. This paper presents an approach to testing this hy-
pothesis based on analysing and comparing models of designing from dif-
ferent domains. There have been similar efforts in the past. For example, in
1998 an international workshop organized by Grabowski et al. (1998)

 2

brought together design theorists from different disciplines, aiming to
build a unified or universal design theory. Discussions concentrated on
finding out whether differences between the models were caused by differ-
ent concepts or just by different terms for the same concept. Such discus-
sions have continued until today (Sim and Duffy 2003; Frey and Dym
2006; Boon and Knuuttila 2009; Vermaas 2009; Eder 2012; Chakrabarti
and Blessing 2014; Vermaas 2014; Lindemann 2014).

Approaches to extracting commonalities across different models of de-
signing have been limited to qualitative analyses. In this paper we propose
a quantitative approach to analysing and comparing models of designing. It
is based on simulations of the design process using the domain-
independent function-behaviour-structure (FBS) ontology and its deriva-
tive, the situated FBS framework. The simulation models are constructed
by mapping the models of designing onto the 20 processes defined in the
situated FBS framework and aggregating them to the six design issues of:
requirement issues, function issues, expected behaviour issues, structure
behaviour issues, structure issues, and description issues. The cumulative
occurrence of the six design issues over the course of a simulation is ana-
lysed in terms of their slope, their first occurrence, their continuity and
their linearity. The quantitative approach presented in this paper is applied
to Pahl and Beitz’ model of engineering design, the Rational Unified Pro-
cess of software design, and the Design for Six Sigma model of service
design.

This paper is structured as follows: Section 2 presents the three models
of designing that will be used to demonstrate the approach and outlines
their common overall process structure qualitatively. Section 3 develops a
simulation model for these domain-specific models of designing based on
the steps contained within them. Section 4 presents the results derived
from running the simulation for each of the three models of designing.
Section 5 describes the commonalities found, and Section 6 discusses
some conclusions that can be drawn from the results. Appendices include
the situated FBS framework and the mappings between the three models
and the FBS design issues.

2. Three Domain-Specific Models of Designing

Domain-specific models differ from each other mostly in the concepts they
use for describing the respective artefacts to be designed. These models
commonly represent designing as a phase-based activity (Tate and Nord-
lund 1996) where the state of the design gradually progresses from abstract

 3

to concrete. We chose three phase-based models of designing from dispar-
ate design domains as a basis for our analyses: engineering design, soft-
ware design, and service design.

Engineering design is a design discipline with a long tradition in devel-
oping models of designing. One of the most detailed and established mod-
els in this discipline is Pahl and Beitz’ (2007) Systematic Approach, which
was first published in its German edition in 1977. It describes designing as
a sequence of four phases: (1) Task Clarification, (2) Conceptual Design,
(3) Embodiment Design, and (4) Detail Design. Task Clarification is con-
cerned with collecting, formulating and documenting the requirements of
the product to be designed. Conceptual Design aims to identify the basic
principles and outline of a design solution (or concept). Embodiment De-
sign then elaborates the design into a layout that satisfies various technical
and economic criteria. Detail Design finalises the design and prepares pro-
duction documents. Each of the four phases comprises a sequence of activ-
ities that may be executed iteratively. After every phase a “decision-
making step” is performed to assess the results of the phase and decide
whether the subsequent phase can be started or whether the phase needs to
reiterate. Here, “[t]he smallest possible iteration loop is desirable” (ibid, p.
129). Pahl and Beitz do not explicitly exclude iterations across different
phases. On the other hand, the “stage-gate” character of the Systematic
Approach clearly favours a “waterfall” view where iterations are to occur
only within a stage or phase (Tate and Nordlund 1996; Unger and Epping-
er 2011). Table 1 shows the phases of Pahl and Beitz’ Systematic Ap-
proach, and the activities associated with each phase.

Table 1 Pahl and Beitz’ (2007) Systematic Approach

Phases Activities

1. Task Clarifica-
tion

1.1 Define basic market demands
1.2 Define attractiveness demands of the market segment
1.3 Document customer-specific technical performance re-
quirements
1.4 Refine and extend the requirements using the checklist
and scenario planning
1.5 Determine demands and wishes

2. Conceptual
Design

2.1 Abstract to identify the essential problems
2.2 Establish function structures: overall function – subfunc-
tions
2.3 Search for working principles that fulfil the subfunctions
2.4 Combine working principles into working structures
2.5 Select suitable combinations
2.6 Firm up into principle solution variants

 4

2.7 Evaluate variants against technical and economic criteria

3. Embodiment
Design

3.1 Identify embodiment-determining requirements
3.2 Produce scale drawings of spatial constraints
3.3 Identify embodiment-determining main function carriers
3.4 Develop preliminary layouts and form designs for the
embodiment-determining main function carriers
3.5 Select suitable preliminary layouts
3.6 Develop preliminary layouts and form designs for the
remaining main function carriers
3.7 Search for solutions to auxiliary functions
3.8 Develop detailed layouts and form designs for the main
function carriers ensuring compatibility with the auxiliary
function carriers
3.9 Develop detailed layouts and form designs for the auxilia-
ry function carriers and complete the overall layouts
3.10 Evaluate against technical and economic criteria
3.11 Optimise and complete form designs
3.12 Check for errors and disturbing factors
3.13 Prepare preliminary parts lists and production docu-
ments

4. Detail Design

4.1 Finalise details; complete detail drawings
4.2 Integrate into overall layout drawings, assembly drawings
and parts lists
4.3 Complete production documents with production, assem-
bly, transport and operating instructions
4.4 Check all documents for standards, completeness and
correctness

The discipline of software design has also brought about several models

of designing. Here, one of the most widely used models is the Rational
Unified Process (RUP). Although it was primarily developed as a com-
mercial product, its basic concepts outlined by Kruchten (2004) form a
publicly available and highly cited model of designing. RUP defines the
following phases for software design processes: (1) Inception, (2) Elabora-
tion, (3) Construction, and (4) Transition. Inception deals with understand-
ing the requirements and defining the scope of the design. Elaboration
specifies and prototypes the main features and architecture of the software
design solution. Construction elaborates this solution by developing the
complete set of features and implementing all the components of the soft-
ware. Transition focuses on verifying design quality, manufacturing, and
delivering the software to the user. Kruchten (2004) suggests this four-
phase process be executed iteratively. He also suggests that the specific
activities within each phase are to be configured depending on the needs of
the individual design project. On the other hand, he describes “typical iter-

 5

ation plans” (ibid, Chapter 16) that can be viewed as a representative se-
quence of activities that is likely to cover most instances of software de-
sign processes. Table 2 summarises the phases and activities in such a
“typical” configuration of RUP.1

Table 2 Kruchten’s (2004) Rational Unified Process

Phases Activities

1. Incep-
tion

1.1 Analyze the problem
1.2 Understand stakeholder needs
1.3 Define the system
1.4 Manage the scope of the system
1.5 Refine the system definition

2. Elabo-
ration

2.1 Decide which use cases and scenarios will drive the development
of the architecture
2.2 Understand this driver in detail and inspect the results
2.3 Reconsider use cases and risks
2.4 Prototype the user interface
2.5 Find obvious classes, do initial subsystem partitioning, and look
at use cases in detail
2.6 Refine and homogenize classes and identify architecturally sig-
nificant ones; inspect results
2.7 Consider the low-level package partitioning
2.8 Adjust to the implementation environment, decide the design of
the key scenarios, and define formal class interfaces; inspect results
2.9 Consider concurrency and distribution of the architecture
2.10 Inspect the architectural design
2.11 Consider the physical packaging of the architecture
2.12 Plan the integration
2.13 Plan integration tests and system tests
2.14 Implement the classes and integrate
2.15 Integrate the implemented parts
2.16 Assess the executable architecture

3. Con-
struction

3.1 Plan system-level integration
3.2 Plan and design system-level test
3.3 Refine use-case realizations
3.4 Plan and design integration tests at the subsystem and system
levels
3.5 Develop code and test unit

1 For the Inception phase we use the workflow defined for the requirements disci-
pline and omit the design project management activities that are included in
Kruchten’s “typical” Inception phase. We view these management activities as
beyond the scope of a model of designing. For the Transition phase, where there
are no “typical” activities defined, we use Kruchten’s deployment workflow.

 6

3.6 Plan and implement unit test
3.7 Test unit within a subsystem
3.8 Integrate a subsystem
3.9 Test a subsystem
3.10 Release a subsystem
3.11 Integrate the system
3.12 Test integration
3.13 Test the system

4. Transi-
tion

4.1 Plan deployment
4.2 Develop support material
4.3 Produce deployment unit
4.4 Beta test product

Service design is a more recent discipline with few existing process

models. One of them is Design for Six Sigma (DFSS), which has been used
to describe both designing products and designing services (or processes).
One of the many variants of DFSS that is specific to designing services is
the ICOV (Identify-Conceptualize-Optimize-Validate) model presented by
El-Haik and Roy (2005). We will refer to this model as DFSS-ICOV in
this paper. It proposes the following phases: (1) Identify, (2) Conceptual-
ize, (3) Optimize, and (4) Validate. The Identify phase collects and anal-
yses the requirements for the service to be designed, by listening to both
the “voice of the customer” and the “voice of the business”. The Concep-
tualize phase determines the technical requirements and basic components
of the service. The Optimize phase aims to configure the service in a way
to achieve the best possible performance. The Validate phase tests and re-
fines the service and prepares its launch. At the end of every phase in
DFSS-ICOV there is a review to decide whether to proceed to the next
phase or whether to rework some decisions. Table 3 shows the phases and
activities described in this model.

Table 3 El-Haik and Roy’s (2005) Identify-Conceptualize-Optimize-Validate
model (Design for Six Sigma)

Phases Activities

1. Identify 1.1 Idea creation
1.2 Voice of the customer and business

2. Conceptualize 2.1 Concept development
2.2 Preliminary design

3. Optimize 3.1 Design optimization

4. Validate 4.1 Verification
4.2 Launch readiness

While there are obvious domain-specific differences between the three

 7

models, we can already extract a first commonality: All three models use
four sequential phases with similar goals, Table 4. As designing proceeds
through the four phases, its focus ultimately shifts from the design problem
(phase 1) to the design solution (phase 4), with two intermediate stages:
One stage (phase 2) generates a list of general concepts that have the po-
tential of being used as starting points for synthesis of variations (“concept
structure”). The other stage (phase 3) turns these general concepts into
specific solutions with respect to formulated goals, constraints or resources
(“solution structure”). This general four-phase model is consistent with the
widely held understanding of designing as a progression from the abstract
to the concrete (Roozenburg and Cross 1991; Welch and Dixon 1994;
Hubka and Eder 1996).

Table 4 Common goals of the individual phases in Pahl and Beitz’ Systematic
Approach, Kruchten’s RUP, and El-Haik and Roy’s DFSS-ICOV

Phase Systematic
Approach RUP DFSS-ICOV Overall goal

1
Task
Clarification

Inception Identify
Understanding &
defining the design
problem

2
Conceptual
Design

Elaboration Conceptualize
Generating a con-
cept structure

3
Embodiment
Design

Construction Optimize
Generating a solu-
tion structure

4
Detail
Design

Transition Validate
Finalising & deliv-
ering the design
solution

3. Developing a Simulation Model

Models of designing are generally understood as guidelines to be used by
designers when tackling a design task. If we can describe the activities of a
designer who follows the guidelines provided by a specific model, we can
simulate the design process represented in the model. This Section presents
how such a simulation model can be produced in two steps: generalising
the concepts and terms used by a specific model of designing into FBS
design issues, and mapping the model onto the situated FBS framework.

 8

3.1 Generalising Model-Specific Concepts into FBS Design Issues

Each of the three models of designing describes detailed sequences of ac-
tivities within the four design phases. The models differ not only in the
number of these activities (29 in the Systematic Approach, 35 in RUP, and
7 in DFSS-ICOV), but also in the terms and concepts they use to describe
the output of every activity. For a more detailed analysis, we need to map
the specific concepts used in the models onto a uniform, generic coding
schema. One such schema is the FBS design issue schema that has previ-
ously been used for analysing design protocols (Gero and McNeill 1998;
Kan and Gero 2005). It consists of six design issues: requirements, func-
tion, expected behaviour, behaviour derived from structure (or, shorthand,
structure behaviour), structure, and description.

Requirements: includes all expressions of customer or market needs,
demands, wishes and constraints that are explicitly provided to the design-
ers at the outset of a design task. For example, requirement issues include
“technical performance requirements […] articulated by the customer”
(Pahl and Beitz 2007, p. 150), “stakeholder requests” (Kruchten 2004, p.
166), and “customer needs and wants” (El-Haik and Roy 2005, p. 84).

Function: includes teleological representations that can cover any ex-
pression related to potential purposes of the artefact. These representations
may be flow-based or state-based (Chittaro and Kumar 1998). Unlike re-
quirement issues, function issues are not directly provided to the designer;
they are generated by the designer based on interpretations of requirement
issues. Function issues in the Systematic Approach include “the intended
input/output relationship of a system” (Pahl and Beitz 2007, p. 31) and
some examples of needs related to safety, aesthetics or economic proper-
ties. Function issues in RUP include the notion of a use case as a “se-
quence of actions a system performs that yields an observable result of
value to a particular actor” (Kruchten 2004, p. 98), and some “nonfunc-
tional requirements” that “deliver the desired quality to the end user” (ibid,
p. 159). Function issues in DFSS-ICOV include “service and process func-
tional requirements” that are derived from those requirements provided by
the customer (El-Haik and Roy 2005, p. 87).

Expected Behaviour: includes attributes that describe the artefact’s ex-
pected interaction with the environment. They can be used as guidance or
assessment criteria for potential design solutions. Expected behaviour is-
sues in the Systematic Approach include “physical effects” describing the
“working principles” of the interactions between different parts of the de-
sign object (Pahl and Beitz 2007, p. 40), as well as “technical, economic
and safety criteria” used for design evaluation (ibid, p. 193). Similarly,
Expected behaviour issues in RUP are captured by the “design model” that

 9

“consists of a set of collaborations of model elements that provide the be-
haviour of the system” (Kruchten 2004, p. 177), and “measurable testing
goals” (ibid, p. 253) that are often subsumed in “nonfunctional require-
ments”. Expected behaviour issues in DFSS-ICOV include “CTSs (criti-
cal-to-satisfaction requirements, also known as big Ys)” (El-Haik and Roy
2005, p. 33) and some “functional requirements” such as the (expected)
“service time” (ibid, p. 96).

Structure Behaviour (or “Behaviour derived from Structure”): includes
those attributes of the artefact that are measured, calculated or derived
from observation of a specific design solution and its interaction with the
environment. Instances of structure behaviour must be of the same type as
instances of expected behaviour, so as to allow for the comparison and
evaluation of design solutions. As a result, structure behaviour issues cover
the same notions in the three models of designing as outlined for expected
behaviour issues.

Structure: includes the components of an artefact and their relationships.
They can appear either as a “concept structure” or a “solution structure”,
which are the outputs of phases 2 and 3 in Table 1. The former includes
Pahl and Beitz’ (2007, p. 40) “working surfaces” and “working materials”,
Kruchten’s (2004, p. 174) “classes and subsystems”, and El-Haik and
Roy’s (2005, p. 6) “design parameters”. The latter includes Pahl and Beitz’
(2007, p. 227) “layout” and “form”, Kruchten’s (2004, p. 256) “code”, and
El-Haik and Roy’s (2005, p. 7) “detail designs”.

Description: includes any form of design-related representations pro-
duced by a designer, at any stage of the design process. The descriptions
presented in the Systematic Approach include sketches, CAD models, re-
quirements lists, physical prototypes, calculations, and other documenta-
tion produced by mechanical engineers. Descriptions in RUP include sto-
ryboards, UML models, code files, test plans and other representations
produced by software designers. Descriptions in DFSS-ICOV include
House of Quality diagrams, FMEA worksheets, process maps, and concept
selection matrices, among many others.

3.2 Mapping the Models of Designing onto the Situated FBS Frame-
work

Every activity described in the three models of designing is concerned with
generating one or more design issues. These activities may be mapped on-
to the eight fundamental processes defined in the FBS framework (Gero
1990), labelled 1 to 8 in Fig. 1. For simulating the design process, howev-
er, these processes are still too coarse-grained as they do not include the
situation in which they are performed. A more detailed view is provided by

 10

the situated FBS (sFBS) framework (see Appendix A) that represents de-
signing as the interaction of a designer with the design situation (Gero and
Kannengiesser 2004). This framework defines 20 discrete processes that
include a number of cognitive and physical activities, such as the interpre-
tation of requirement lists and design representations, the reflection on cur-
rent or past design experiences, the decision-making regarding the current
design state space, and physical actions including sketching, calculating
and documenting.

Fig. 1 The FBS framework

Mapping the activities described in a model of designing onto the sFBS

framework allows considering the designer’s situated interactions in the
simulation model. At the same time, the basic representation of designing
in terms of the six design issues is maintained. This is because the results
of executing the 20 processes are specialised classes of design issues that
can be aggregated back to the original six categories. The aggregation of
the 20 sFBS processes to the six FBS design issues is shown in Table 5.

Table 5 The results of each of the 20 sFBS processes (labelled based on the sFBS
framework shown in Appendix A) are aggregated to the six FBS design issues

sFBS process FBS design issue
1 R
2 R
3 R

 11

4 F
5 Be or Bs (*)
6 S
7 F
8 Be
9 S

10 Be
11 S
12 D
13 S
14 Bs
15 --- (**)
16 F
17 D
18 D
19 Be or Bs (*)
20 F

* depending on whether the behaviour produced in these processes is in-
terpreted as expected/desired or “actual”/emerging
** This process produces no design issue

The mappings onto the sFBS framework require some interpretation of

each of model of designing in terms of elementary steps and the logical
sequences of these steps. The three models presented in Section 2 provide
sufficient elaboration and illustration to support this interpretation for most
of their defined activities. Take the first activity, “Define basic market de-
mands”, described within Pahl and Beitz’ design phase of Task Clarifica-
tion (see Appendix B, Table B1). This activity requires as input the inter-
pretation of a “development order” or “product proposal” that contains the
product’s desired “functionality and performance”, which in the FBS de-
sign issue system is a requirement issue (interpreted by process 1 in the
sFBS framework). Next, “basic market demands”, such as “suitable for
tropical conditions” and “P > 20 kW” (Pahl and Beitz 2007, p. 147), are
constructed by the designer as “implicit requirements, i.e. they are not ar-
ticulated by the customer” (ibid, p. 150). We map these market demands
onto function and expected behaviour issues (constructed by processes 4
and 5). They are compiled in a “requirements list” and “Quality Function
Deployment (QFD)” diagrams (ibid, p. 145) that represent description is-
sues (produced by processes 18 and 17). As shown in Table 6, these map-
pings result in five elementary design steps, each of which produces one
design issue, and their logical sequence. (More detailed comments for each

 12

of the mappings in the Systematic Approach can be found in Appendix B,
for RUP in Appendix C, and for DFSS-ICOV in Appendix D.)

Table 6 The steps involved in Pahl and Beitz’ activity of “Define basic market
demands” and their mappings onto the FBS design issue system and the sFBS

framework

Design
step

Pahl and Beitz’
description

Process in sFBS (la-
bel)

FBS design
issue

1
Receive “development or-
der” or “product proposal”

Interpret functional
requirements (1)

Requirement

2
Identify basic market de-
mands

Construct functions not
explicitly stated (4)

Function

3
Construct expected
behaviours not explicit-
ly stated (5)

Expected
Behaviour

4
Produce QFD diagrams and
requirements list

Produce external repre-
sentations of function
(18)

Description

5
Produce external repre-
sentations of expected
behaviour (17)

This method of coding and mapping was applied to all three models of

designing. The complete set of mappings is shown in Appendices B, C and
D. The Systematic Approach has 87 mappings, RUP has 100 mappings,
and DFSS-ICOV has 41 mappings.

The three sets of mappings of elementary steps can be viewed as a basis
for simulation models that need to be complemented with assumptions re-
garding:

1. the number of occurrences of every elementary step, and
2. the number of iterations within a design phase (we assume that no

cross-phase iterations will occur, given the “waterfall” nature of
the models)

The first of these assumptions cannot be made without knowledge of
specific instances of designing including knowledge about the novelty and
complexity of the design task. Staying on the model level rather than the
instance level, our working assumption is that every elementary step oc-
curs only once within the same iteration. This assumption is used for each
of the three models, and will be revisited in the discussion of results.

 13

The second assumption is similarly based on task- and designer-specific
knowledge that is not available at this general level. However, in the case
of RUP, Kruchten (2004, p. 133) states that there are three typical scenari-
os regarding the number of iterations for each of the four phases within
RUP (phase 1: inception; phase 2: elaboration; phase 3: construction;
phase 4: transition; see Table 4). These scenarios are shown in Table 7.

Table 7 The number of phase iterations in three typical scenarios of RUP (Kruch-
ten 2004, p. 133)

 Scenario 1 (S1) Scenario 2 (S2) Scenario 3 (S3)
Phase 1 0 1 1
Phase 2 1 2 3
Phase 3 1 2 3
Phase 4 1 1 2

For the Systematic Approach and DFSS-ICOV no concrete scenarios

are detailed in the literature. Based on the high-level structural similarity
of our three models (as shown in Section 2), an initial working assumption
is that the scenarios in Table 7 will be used across all three models. We
will revisit this assumption in the discussion of results.

Applying the three generic scenarios to each model of designing pro-
duces the datasets shown in Table 8.

Table 8 The number of steps produced by applying the three scenarios to each
model of designing

 Systematic
Approach

RUP DFSS-ICOV

Scenario 1 (S1) 154 185 70
Scenario 2 (S2) 235 278 103
Scenario 3 (S3) 302 363 132

3.3 Quantitative Analysis

Having pre-processed the models of designing as sequences of steps, each
of which produces an FBS design issue, allows applying cumulative occur-
rence analysis (Pourmohamadi 2010). This analysis has previously been
applied to coded design protocols where designing is represented as a se-
quence of segments each producing one ontological design issue (Kannen-
giesser et al. 2013). The cumulative occurrence (c) of design issue (x) at
design step (n) is defined as 𝑐 = 𝑥!!

!!! where (xi) equals 1 if design step

 14

(i) is coded as (x) and 0 if design step (i) is not coded as (x). Plotting the
results of this equation on a graph with the design steps (n) on the horizon-
tal axis and the cumulative occurrence (c) on the vertical axis will visualise
the occurrence of the design issues. Figure 2 shows a general representa-
tion of such a graph.

Fig. 2 Graphical representation of the cumulative occurrence of design issues

across design steps

Drawing on Gero et. al (2014), four measures are used for analysing the
cumulative occurrence-based representations of the different models of
designing:

• Slope: The measure represents the rate at which design issues
are generated.

• First occurrence at start: This measure indicates whether design
issues first occur near the start of designing or at a later stage.

• Continuity: This measure indicates whether design issues occur
throughout designing or only up to a certain point.

• Linearity: This measure indicates whether the speed at which
design issues are generated is constant. It is measured using the
coefficient of determination (R2): If R2 is at least 0.95, the graph
is linear.

All of these measures are independent of the number of design steps.
This allows comparing models of designing that have different levels of
detail and different numbers of iterations.

4. Simulation Results
In this Section we present the measures we derived from analysing the
three models of designing. These measures are presented in Tables 9 to 14.
In addition, to allow readers to carry out their own qualitative assessments,
we also provide the raw data in the form of graphs representing the cumu-

 15

lative occurrence of design issues for scenario S2. These graphs are shown
in Figures 3, 4 and 5. The vertical lines in these Figures separate the four
phases in each model. They help in locating the occurrence of design is-
sues within the respective model of designing, which is useful for deriving
the measures of “first occurrence at start” and “continuity”.

Fig3 Cumulative occurrence of design issues in the Systematic Approach (for the

“typical” scenario S2)

 16

Fig4 Cumulative occurrence of design issues in the Rational Unified Process (for

the “typical” scenario S2)

 17

Fig5 Cumulative occurrence of design issues in DFSS-ICOV (for the “typical”

scenario S2)

Table 9 Requirement issues

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1*
S2
S3

0.038
0.036

0.966
0.977

Yes
Yes
Yes

No
No
No

Yes
Yes

RUP*
S1, S2,
S3

--- --- Yes No ---

DFSS-
ICOV*
S1, S2,
S3

Yes

No

* No statistical results produced due to small dataset (< 10 data points)

Table 10 Function issues

 18

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1
S2
S3

0.118
0.127
0.122

0.924
0.947
0.948

Yes
Yes
Yes

No
No
No

No
No
No

RUP
S1
S2
S3

0.096
0.117
0.114

0.810
0.860
0.874

Yes
Yes
Yes

No
No
No

No
No
No

DFSS-
ICOV
S1*
S2
S3

0.115
0.101

0.806
0.820

Yes
Yes
Yes

No
No
No

No
No

* No statistical results produced due to small dataset (< 10 data points)

Table 11 Expected behaviour issues

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1
S2
S3

0.207
0.217
0.210

0.899
0.924
0.915

Yes
Yes
Yes

No
No
No

No
No
No

RUP
S1
S2
S3

0.157
0.154
0.153

0.978
0.981
0.981

Yes
Yes
Yes

No
No
No

Yes
Yes
Yes

DFSS-
ICOV
S1*
S2
S3

0.155
0.143

0.889
0.888

Yes
Yes
Yes

No
No
No

No
No

* No statistical results produced due to small dataset (< 10 data points)

Table 12 Structure behaviour issues

 19

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1**
S2**
S3**

0.065
0.065
0.065

0.959
0.982
0.989

No
No
No

Yes
Yes
Yes

Yes
Yes
Yes

RUP
S1**
S2**
S3**

0.127
0.121
0.120

0.972
0.978
0.980

No
No
No

Yes
Yes
Yes

Yes
Yes
Yes

DFSS-
ICOV
S1*
S2*
S3**

0.113

0.919

No
No
No

Yes
Yes
Yes

No

* No statistical results produced due to small dataset (< 10 data points)
** The initial design steps of the protocol are ignored in slope and linearity
calculations to take into account that the first occurrence is not at the start

Table 13 Structure issues

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1*
S2*
S3*

0.422
0.418
0.419

0.977
0.978
0.979

No
No
No

Yes
Yes
Yes

Yes
Yes
Yes

RUP
S1*
S2*
S3*

0.394
0.390
0.386

0.997
0.999
0.999

No
No
No

Yes
Yes
Yes

Yes
Yes
Yes

DFSS-
ICOV
S1*
S2*
S3*

0.342
0.384
0.376

0.967
0.994
0.996

No
No
No

Yes
Yes
Yes

Yes
Yes
Yes

* The initial design steps of the protocol are ignored in slope and linearity
calculations to take into account that the first occurrence is not at the start

 20

Table 14 Description issues

Model of
design-
ing

Slope R2 First occur-
rence at start

Continuity Linearity

Sys. App.
S1
S2
S3

0.196
0.198
0.192

0.968
0.972
0.976

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

RUP
S1*
S2*
S3*

0.251
0.241
0.243

0.991
0.996
0.997

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

DFSS-
ICOV
S1
S2
S3

0.340
0.316
0.325

0.979
0.984
0.984

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

* The initial design steps of the protocol are ignored in slope and linearity
calculations to take into account that the first occurrence is not at the start

As a first observation, we note that there are no or only small differ-

ences among the three scenarios within each model of designing. All quali-
tative measures (first occurrence at start, continuity, and linearity) are the
same for S1, S2 and S3 of each model. Differences in slope are not signifi-
cant across the three scenarios.

When comparing the three models of designing with each other, we can
make the following observations:

• First occurrence at start: In all three models, requirement is-
sues, function issues, expected behaviour issues and description
issues occur at the start (or in phase 1) of the design process.
And in all three models, structure behaviour issues and structure
issues occur later (in phase 2).

• Continuity: The cumulative occurrence of requirement issues,
function issues and expected behaviour issues is discontinuous
in all three models. Structure behaviour issues, structure issues
and description issues are continuous in all three models.

• Linearity: The cumulative occurrence of function issues in all
three models is non-linear, whereas the cumulative occurrence
of structure issues and description issues in all three models is
linear. For expected behaviour issues and structure behaviour
issues, the results are inconsistent across the models.

• Slope: Using one-way ANOVA tests, a common slope across

 21

the three models of designing was found only for function is-
sues (F2,5 = 5.224, p = 0.06). No commonalities in slope were
found for requirement issues (insufficient data), expected be-
haviour issues (F2,5 = 101.546, p < 0.05), structure behaviour is-
sues (F2,4 = 319.341, p < 0.05), structure issues (F2,6 = 11.889, p
< 0.05) and description issues (F2,6 = 220.841, p < 0.05).

5. Discussion of Results

The results can be discussed in terms of the commonalities found across
the three models of designing and in terms of the assumptions underlying
the simulation models.

5.1 Identifying Commonalities across the Three Models of Designing

Our analysis has uncovered a number of commonalities among the three
models of designing, independent of the number of iterations in each mod-
el (see Section 5.2 for an explanation of why they are independent). Table
15 summarises our findings, using the “+” symbol to indicate the existence
of a commonality. A common slope was identified only for function is-
sues. Commonalities regarding the first occurrence of design issues near
the start were found for requirements issues, function issues, expected be-
haviour issues and description issues. Commonalities regarding the conti-
nuity of the graph were found for structure behaviour issues, structure is-
sues and description issues. The commonality of linearity was identified
for structure issues and description issues.

Table 15 Summary of commonalities

Design issue Com-
mon
Slope

First occur-
rence at

start

Continuity Line-
arity

Require-
ment +

Function + +
Expected
Behaviour +

Structure
Behaviour +

Structure + +
Description + + +

 22

Some of the commonalities are consistent with the general goals of each

of the four phases of the models, as introduced in Section 2. In the three
models, requirement issues, function issues, expected behaviour issues and
description issues start occurring in phase 1 as they are needed to define
and document the design problem. The occurrence of these issues, except
for description issues that continue to occur until the end, tends to diminish
later as the focus of designing shifts towards possible design solutions.
Structure issues and structure behaviour issues start occurring later, and
continue to occur until the final design solution is determined, validated
and documented. There is no common slope except for function issues.

5.2 Revisiting Assumptions for the Simulation Models

The results of applying our approach shed some light on the validity of the
assumptions used for constructing the simulation models (see Section 3.2).

Our first assumption was that every design step occurs only once within
the same iteration. In common design practice this assumption is not real-
istic, because incomplete knowledge and design complexity often require
repeating the same or similar design activities multiple times (Wynn et al.
2007). However, these task- and designer-specific variables cannot be tak-
en into account for analysing models of designing that are independent of
particular instances. Therefore the validity of the one-execution-per-step
assumption must be based on its usefulness in analysing and comparing
different models rather than its relation to the practice of designing. In-
creasing the number of executions per step, uniformly across all steps of a
model, would not lead to changes in the four measures except for changed
values for slopes. Even if the number of executions can vary for different
steps in a model, only the shape of the graph would be affected in terms of
its linearity or non-linearity, not a change from one shape to another. As a
result, our assumption of one execution per step seems to be a useful and
valid choice.

Our second assumption was related to the number of iterations of the
different phases within a model of designing. We took Kruchten’s (2004)
three “typical” scenarios for RUP, each of which defines different numbers
of iterations for the four phases, and applied them to the other models. The
results show that the behaviour of the cumulative occurrence graphs in all
three models of designing did not vary for the different scenarios. We
might therefore simplify the assumption to include only one simple scenar-
io where there are no iterations for any of the four phases. This would also

 23

facilitate the application of our approach to models that cannot be mapped
onto the 4-phase process structure. For example, the VDI-2221 model
(VDI 1985) has seven phases, and some variants of DFSS such as
DMADV (“Define-Measure-Analyse-Design-Verify”) and IDDOV (“Iden-
tify-Define-Design-Optimize-Validate”) have five phases.

6. Conclusion

This paper proposed a quantitative approach for the analysis of domain-
specific models of designing. Its application to three models of designing
demonstrates its applicability to domains as different as engineering, soft-
ware and service design. Based on its ontological foundations, the ap-
proach allows comparisons between models from different design do-
mains. The comparison of the models analysed in this paper shows that
there are some strong commonalities that provide support for the hypothe-
sis that designing is an act that is independent of the domain of its applica-
tion. This has important implications for design education: If designing is
foundational and domain-independent and different to science and humani-
ties, then consideration should be given to teaching design in parallel with
science and humanities.

The findings presented in this paper provide a starting point for future
research. This includes the application of the method to more models of
designing, which may establish further quantitative evidence for the exist-
ence of commonalities across different models and domains. These results
could be compared with empirical research, as there are many protocol
studies available using the same FBS design issue scheme. Such compari-
sons would provide the basis to examine differences between models of
designing and designing as practised.

Acknowledgements

This research is supported in part by grants from the US National Science
Foundation grant nos. IIS-1002079, CMMI-1400466 and CMMI-1161715.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

 24

References

Asimow M (1962) Introduction to Design, Prentice-Hall, Englewood Cliffs, NJ.
Boon M and Knuuttila T (2009) Models as epistemic tools in engineering scienc-

es, in Meijers (ed.) Philosophy of Technology and Engineering Sciences,
Elsevier, Amsterdam, pp. 693-726.

Chakrabarti A and Blessing LTM (2014) Theories and models of design: A sum-
mary of findings, in A Chakrabarti and LTM Blessing (eds) An Anthology of
Theories and Models of Design, Springer, London, pp. 1-46.

Chittaro L and Kumar AN (1998) Reasoning about function and its applications to
engineering, Artificial Intelligence in Engineering 12(4): 331-336.

Cross N (1982) Designerly ways of knowing, Design Studies 3(4): 221-227.
Dym C (1994) Engineering Design: A Synthesis of Views, Cambridge University

Press, Cambridge, MA.
Eder WE (2012) Comparison of several design theories and methods with the leg-

acy of Vladimir Hubka, Public Report, The Design Society.
El-Haik B and Roy DM (2005) Service Design for Six Sigma: A Roadmap for Ex-

cellence, John Wiley & Sons, Hoboken, NJ.
Frey DD and Dym CL (2006) Validation of design methods: lessons from medi-

cine, Research in Engineering Design 17(1): 45-57.
Gero JS (1990) Design prototypes: A knowledge representation schema for de-

sign, AI Magazine 11(4): 26-36.
Gero JS and Kannengiesser U (2004) The situated function-behaviour-structure

framework, Design Studies 25(4): 373-391.
Gero JS and McNeill T (1998) An approach to the analysis of design protocols,

Design Studies 19(1): 21-61.
Grabowski H, Rude S and Grein G (1998) Universal Design Theory, Shaker Ver-

lag, Aachen.
Hubka V and Eder WE (1996) Design science: Introduction to the Needs, Scope

and Organization of Engineering Design Knowledge, Springer, London.
Kan J and Gero JS (2005) Design behaviour measurement by quantifying

linkography in protocol studies of designing, in JS Gero and U Lindemann
(eds) Human Behaviour in Designing’05, Key Centre of Design Computing
and Cognition, University of Sydney, Australia, pp. 47-58.

Kannengiesser U, Williams C. and Gero JS (2013) What do the concept genera-
tion techniques of TRIZ, morphological analysis and brainstorming have in
common?, DS 75-7: Proceedings of the 19th International Conference on En-
gineering Design (ICED13), Design for Harmonies, Vol.7: Human Behaviour
in Design, Seoul, Korea.

Kruchten P (2004) The Rational Unified Process: An Introduction, Addison-
Wesley, Upper Saddle River, NJ.

Lawson B (1980) How Designers Think: The Design Process Demystified, Archi-
tectural Press, Amsterdam.

Lindemann U (2014) Models of design, in A Chakrabarti and LTM Blessing (eds)
An Anthology of Theories and Models of Design, Springer, London, pp. 121-

 25

132.
Pahl G and Beitz W (2007) Engineering Design: A Systematic Approach, Spring-

er, Berlin.
Pourmohamadi, M (2010) Designerly Ways of Customising, PhD Thesis, Univer-

sity of Sydney, Australia.
Roozenburg NFM and Cross NG (1991) Models of the design process: Integrating

across the disciplines, Design Studies 12(4): 215-220.
Sim SK and Duffy AHB (2003) Towards an ontology of generic engineering de-

sign activities, Research in Engineering Design 14(4): 200-223.
Tate D and Nordlund M (1996) A design process roadmap as a general tool for

structuring and supporting design activities, Proceedings of the Second World
Conference on Integrated Design and Process Technology (IDPT-Vol. 3), So-
ciety for Design and Process Science, Austin, TX, pp. 97-104.

Ullman DG, Dietterich TG and Stauffer LA (1988) A model of the mechanical
design process based on empirical data, Artificial Intelligence for Engineer-
ing, Design, Analysis and Manufacturing 2(1): 33-52.

Unger D and Eppinger S (2011) Improving product development process design: a
method for managing information flows, risks, and iterations, Journal of En-
gineering Design 22(10): 689-699.

VDI (1985) VDI-Richtlinie 2221 (Entwurf): Methodik zum Entwickeln und Kon-
struieren technischer Systeme und Produkte, VDI-Verlag, Düsseldorf.

Vermaas PE (2009) The flexible meaning of function in engineering, in M Norell
Bergendahl et al. (eds) Proceedings of the 17th International Conference on
Engineering Design (ICED'09), Vol. 2, The Design Society, pp. 113-124.

Vermaas PE (2014) Design theories, models and their testing: On the scientific
status of design research, in A Chakrabarti and LTM Blessing (eds) An An-
thology of Theories and Models of Design, Springer, London, pp. 47-66.

Visser W (2009) Design: one, but in different forms, Design Studies 30(3): 187-
223.

Welch RV and Dixon JR (1994) Guiding conceptual design through behavioral
reasoning, Research in Engineering Design 6(3): 169-188.

Wynn DC, Eckert CM and Clarkson PJ (2007) Modelling iteration in engineering
design, International Conference on Engineering Design (ICED'07), Paris,
France, pp. 561/1-11.

 26

Appendix A – The Situated FBS Framework

Fig. A1 The situated FBS framework

Explanation of symbols:
Fei: Expected Function
Fi: Interpreted Function
Fe: External Function
FRe: Requirement on Function

Bei: Expected Behaviour
Bi: Interpreted Behaviour
Be: External Behaviour
BRe: Requirement on Behaviour

Sei: Expected Structure
Si: Interpreted Structure
Se: External Structure
SRe: Requirement on Structure

 27

Appendix B - Pahl and Beitz’ Systematic Approach

Table B1. Phase 1: Task Clarification (numbers refer to sFBS process la-
bels; page numbers refer to Pahl and Beitz (2007))

Activity Design
issue

sFBS
step

Comments

1.1 Define basic
market demands

R

F, Be

D, D

1

4, 5

18,
17

-a “task description” is given in the ex-
ternal world, describing the product’s
desired “functionality and performance”
(p. 145)
-generated internally: “Basic require-
ments are always implicit requirements,
i.e. they are not articulated by the cus-
tomer.” (p. 150)
-can be related to F and B in new prod-
uct development
-all requirements are compiled as a re-
quirements list that is produced in the
external world

1.2 Define attrac-
tiveness demands
of the market seg-
ment

F, Be

D, D

4, 5

18,
17

-generated internally: “Attractiveness
requirements are again implicit require-
ments.” (p. 151)
-can be related to F and B in new prod-
uct development
-all requirements are compiled as a re-
quirements list that is produced in the
external world

1.3 Document cus-
tomer-specific
technical perfor-
mance require-
ments

R

D

2

17

-given in the external world: “Technical
performance requirements are explicit
requirements. They are articulated by
the customer and can usually be speci-
fied precisely.” (pp. 150)
-“performance” corresponds to B; see
also the examples on p. 151
-all requirements are compiled as a re-
quirements list that is produced in the
external world

1.4 Refine and
extend the re-
quirements using
the checklist and
scenario planning

F, Be,
Be

D, D

4, 5,
10

18,
17

-these requirements are internally devel-
oped; no specific guidance from external
world
-all requirements are compiled as a re-
quirements list that is produced in the
external world

1.5 Determine F, Be 7, 8 -distinction between demands and wish-

 28

demands and
wishes

D, D

18,
17

es is about formulating a design state
space (focussing)
-demands/wishes distinction is included
in the requirements list in the external
world: see example on p. 154

Table B2. Phase 2: Conceptual Design (numbers refer to sFBS process

labels; page numbers refer to Pahl and Beitz (2007))

Activity Design
issue

sFBS
step

Comments

2.1 Abstract to
identify the essen-
tial problems

F 20 -related to F based on the external re-
quirements list: “Here the task is to ana-
lyse the requirements list with respect to
the required function and essential con-
straints in order to confirm and refine
the crux of the problem.” (p. 164) “[…]
the final formulation can be derived in a
way that does not prejudice the solution,
i.e. is solution-neutral, and at the same
time turns it into a function.” (p. 165)

2.2 Establish func-
tion structures:
overall function –
subfunctions

F

F

4

7

-internal generation of new (sub-) func-
tions
-prioritization of functions: “It is useful
to start by determining the main flow in
a technical system […]. The auxiliary
flows should only be considered later.”
(p. 171) “The search for solutions […]
then focuses on the subfunctions that are
essential for the solution and on which
the solutions of other subfunctions de-
pend […].” (p. 181)

2.3 Search for
working principles
that fulfil the sub-
functions

Be

S

Be, S,
D, D,
S, Be,
Bs, Be

10

6

8, 9,
12,
17,
13,
19,
14, 5

-“Only the combination of the physical
effect with the geometric and material
characteristics […] allows the principle
of the solution to emerge. This interrela-
tionship is called the working principle
[…].” (p. 40)
-involves generating physical effects (B)
based on subfunctions (F)
-involves generating working surfaces
(S) and types of materials (S), both can
be expressed as S variables
-may involve incrementally focusing on
B and S, producing, interpreting and
analysing external S: “[…] the stepwise

 29

R

19, 3

generation of working principles,
through the search for physical effects
and the subsequent form design features,
is often integrated mentally by produc-
ing sketches of solutions. This is be-
cause designers think more in configura-
tions and representation of principles
than in physical equations.” (p. 189)
-involves interpreting relevant behav-
iours in the requirements list (B) and, if
available, structure (SRe): “[Extensive
solution fields] should be reduced as
soon as feasible working principles
emerge by checking against the demands
in the requirements list.” (p. 189)

2.4 Combine
working principles
into working struc-
tures

Be

S

10

6

-“The combination of several working
principles results in the working struc-
ture of a solution.” (p. 40)
-involves creating sets of working prin-
ciples “to fulfil the overall function” (p.
184)
-involves creating sets of working sur-
faces (S) and types of materials (S)

2.5 Select suitable
combinations

Be, S 8, 9 -“selection” here corresponds to focus-
sing on B and S

2.6 Firm up into
principle solution
variants

Be, S

D, D

10,
11

12,
17

-involves generating more information
about the working principles, through
additional variables and some values for
B and S: “The most important properties
of the proposed combination of princi-
ples must first be given a much more
concrete qualitative, and often also a
rough quantitative, definition.” (p. 190)
“The fulfilment of the technical function
alone does not complete the task of de-
signers […]. […] In addition, the solu-
tion of technical tasks imposes certain
constraints or requirements resulting
from ergonomics, production methods,
transport facilities, the intended opera-
tion, etc. […].” (p. 43) “It is advisable to
consider these guidelines [a list of gen-
eral constraints] even during the concep-
tual phase.” (p. 44)
-produces models and sketches (S) and
calculations and tests/simulations (B) in

 30

the external world (p. 190)
2.7 Evaluate vari-
ants against tech-
nical and econom-
ic criteria

Be

Be, Be

Be

S

Bs

--
S, S,
F, F

19

5, 8

8

13

14

15
6, 9,
16, 7

-“Identifying evaluation criteria” (p.
192) involves interpretation of external
B: “This step is based, first of all, on the
requirements list.” (p. 192)
-involves generating and focussing on
additional B using general checklist (p.
193)
-“Weighting the evaluation criteria” (p.
194) corresponds to focussing on B
-“Compiling parameters” (p. 194) in-
volves gathering data from the results of
step 2.6: “Whatever quantitative infor-
mation is available at this stage should
also be included. Such quantitative data
generally result from the step we have
called “firming up into principle solution
variants”.” (p. 194)
-“Assessing values” uses ratings such as
“the 0-4 scale proposed in VDI Guide-
line 2225” (p. 195); “Determining over-
all value” is “a matter of simple addi-
tion” (p. 197)
-“Comparing concept variants” (p. 197)
-may involve generating and focussing
on new solutions, through “transfer of
better subsolutions from other variants”
(p.198), and deriving and focussing on
additional functions through fault-tree
analysis (see example in Fig. 10.7, p.
525)

Table B3. Phase 3: Embodiment Design (numbers refer to sFBS process

labels; page numbers refer to Pahl and Beitz (2007))

Activity Design
issue

sFBS
step

Comments

3.1 Identify em-
bodiment-
determining re-
quirements

F, Be,
R, F,
Be, S

20,
19, 3,
7, 8,
9

-involves interpretation of the require-
ments list in the external world, and
selection (focussing): “Starting with the
principle solution, and using the re-
quirements list, the first step is to identi-
fy those requirements that have a crucial
bearing on the embodiment design.” (p.
228)

3.2 Produce scale D 12 -involves creation of external S

 31

drawings of spatial
constraints
3.3 Identify em-
bodiment-
determining main
function carriers

S 9 -involves selection (focussing) of S in
terms of “the overall embodiment-
determining main function carriers” (p.
228)

3.4 Develop pre-
liminary layouts
and form designs
for the embodi-
ment-determining
main function car-
riers

S

D

11

12

-involves developing S in terms of the
“general arrangement, component
shapes and materials” (p. 230)
-involves producing external representa-
tions of S: “The representation of the
spatial constraints and the embodiment
is now generally obtained by creating a
full 3-D digital model.” (p. 231)

3.5 Select suitable
preliminary lay-
outs

S 11 -this selection is part of the B-to-S trans-
formation

3.6 Develop pre-
liminary layouts
and form designs
for the remaining
main function car-
riers

S

S

D

9

11

12

-involves focussing on “the remaining
main function carriers” (p. 230)
-involves developing S for these func-
tion carriers
-involves producing external representa-
tions of S: “The representation of the
spatial constraints and the embodiment
is now generally obtained by creating a
full 3-D digital model.” (p. 231)

3.7 Search for so-
lutions to auxiliary
functions

S

S

9

6

-involves focussing in terms of select-
ing, “where possible, […] known solu-
tions.” (p. 230)
-may involve generating “special solu-
tions, using the procedures already de-
scribed in Section 3.2 [including creativ-
ity techniques such as brainstorming,
synectics etc.] and Chapter 6.” (p. 230)

3.8 Develop de-
tailed layouts and
form designs for
the main function
carriers ensuring
compatibility with
the auxiliary func-
tion carriers

S

D

11

12

-involves developing S for the main
function carriers
-involves producing external representa-
tions of S: “The representation of the
spatial constraints and the embodiment
is now generally obtained by creating a
full 3-D digital model.” (p. 231)

3.9 Develop de-
tailed layouts and
form designs for

S

D

11

12

-involves developing S for the auxiliary
function carriers
-involves producing external representa-

 32

the auxiliary func-
tion carriers and
complete the over-
all layouts

tions of S: “The representation of the
spatial constraints and the embodiment
is now generally obtained by creating a
full 3-D digital model.” (p. 231)

3.10 Evaluate
against technical
and economic cri-
teria

S, Bs 13,
14,
15

-must involve interpretation of the ex-
ternal model, and analysis and compari-
son

3.11 Optimise and
complete form
designs

S

D

11

12

-involves changing S “by eliminating
the weak spots” (p. 231)
-involves producing external representa-
tions of S: “The representation of the
spatial constraints and the embodiment
is now generally obtained by creating a
full 3-D digital model.” (p. 231)

3.12 Check for
errors and disturb-
ing factors

S, Bs

S, S, S

13,
14,
15
13, 6,
9

-must involve interpretation of the ex-
ternal model, and analysis and compari-
son
-may involve generating and focussing
on new S as a result of fault-tree analy-
sis (p. 526)

3.13 Prepare pre-
liminary parts lists
and production
documents

D 12 -creates documentation (S) in the exter-
nal world

Table B4. Phase 4: Detail Design (numbers refer to sFBS process labels;

page numbers refer to Pahl and Beitz (2007))

Activity Design
issue

sFBS
step

Comments

4.1 Finalise details;
complete detail
drawings

S

D

11

12

-involves optimisation of S by selecting
“the most suitable materials […], at
cost-effectiveness and at ease of produc-
tion, with due attention being paid to
standards […].” (p. 437)
-involves generating S in the external
world, “comprising the detailed drawing
of components, and the detailed optimi-
sation of shapes, materials, surfaces,
tolerances and fits.” (p. 437)

4.2 Integrate into
overall layout
drawings, assem-
bly drawings and
parts lists

D 12 -involves a re-representation of external
S

 33

4.3 Complete pro-
duction documents
with production,
assembly, transport
and operating in-
structions

D 12 -involves a re-representation of external
S

4.4 Check all doc-
uments for stand-
ards, completeness
and correctness

S, Bs 13,
14,
15

-must involve interpretation of the ex-
ternal documents, and analysis and
comparison

Appendix C - Rational Unified Process

Table C1. Phase 1: Inception (numbers refer to sFBS process labels; page
numbers refer to Kruchten (2004))

Activity Design
issue

sFBS
step

Comments

1.1 Analyze the
problem

R

F, Be

1

4, 5

-we assume some expression of a need to
initiate designing
-involves generating internal F and B,
through “gain[ing] agreement on a
statement of the problem we are trying to
solve” (p. 164) and “identify[ing] the
boundaries and constraints of the sys-
tem” (p. 164)

1.2 Understand
stakeholder needs

R, R 1, 2 -involves eliciting external requirements
on F and B, through “gather[ing] stake-
holder requests and […] obtaining a clear
understanding of the real needs of the
users and stakeholders of the system” (p.
166)

1.3 Define the
system

F

D

4

18

-involves generating F by “establish[ing]
the set of system features to be consid-
ered for delivery” (p. 166)
-involves producing external F “to set
realistic expectations with the stakehold-
ers on what features will be delivered”
(p. 166)

1.4 Manage the
scope of the sys-
tem

F, Be

D, D

7, 8

18,
17

-involves selecting or focussing on ex-
pected F and B
-involves producing external F and B as
“requirements attributes” (p. 166)

1.5 Refine the F, Be 4, 10 -involves generating F and B, through

 34

system definition

D, D

18,
17

establishing “the functionality of the
system […] and other important re-
quirements, such as nonfunctional re-
quirements, design constraints, and so
forth” (p. 166)
-involves producing external F and B,
“to come to an agreement with the cus-
tomer” (p. 166)

Table C2. Phase 2: Elaboration (numbers refer to sFBS process labels;

page numbers refer to Kruchten (2004))

Activity Design
issue

sFBS
step

Comments

2.1 Decide which
use cases and sce-
narios will drive the
development of the
architecture

F

F

20

7

-involves interpreting external F, by
“discussing an initial use-case view”
(p. 251)
-involves “determin[ing] which use
cases and scenarios should be focused
on in this iteration” (p. 251)

2.2 Understand this
driver in detail and
inspect the results

F

D

4

18

-involves detailing and “restructur[ing]
the use-case model as a whole”
-involves producing external F as “use-
case model and supplementary specifi-
cation” to be “reviewed and approved”
(p. 251)

2.3 Reconsider use
cases and risks

F

F

20

7

-involves interpreting external F by
“revisit[ing] the use-case view”
-involves focussing by “select[ing] the
set of use cases and scenarios to be
analyzed, designed, and implemented
in the current iteration.” (p. 251)

2.4 Prototype the
user interface

D

F, F

18

20, 7

-involves producing external F by
“build[ing] a user-interface prototype
to get feedback from prospective users”
(p. 252);
-we presume that this feedback may
lead to a reformulation of F

2.5 Find obvious
classes, do initial
subsystem parti-
tioning, and look at
use cases in detail

Be

S

10

6

-involves generating expected B based
on expected F by “identif[ying] the
analysis mechanisms that constitute
common solutions to common prob-
lems during analysis” (p. 252)
-involves generating S by “start[ing]
finding classes or objects for this itera-
tion’s use cases or scenarios” (p. 252)

 35

D, D 17, 12 -involves producing external B and S
as a “software architecture document”
(p. 252)

2.6 Refine and ho-
mogenize classes
and identify archi-
tecturally signifi-
cant ones; inspect
results

S

S

D

11

9

12

-involves synthesizing S by “refin[ing]
the classes identified” (p. 252)
-involves focussing on S by “iden-
tif[ying] a number of classes that
should be considered architecturally
significant” (p. 252)
-involves producing external S by “in-
clud[ing the architecturally significant
classes] in the logical view (Artifact:
Software Architecture Document)” (p.
252)

2.7 Consider the
low-level package
partitioning

S 11 -involves synthesizing S by “or-
ganiz[ing] some of the classes into de-
sign packages” (p. 252)

2.8 Adjust to the
implementation
environment, de-
cide the design of
the key scenarios,
and define formal
class interfaces;
inspect results

Be, S

Be, S

S

D, D

5, 6

8, 9

11

17, 12

-involves generating B and S as con-
straints imposed by “the implementa-
tion environment” (p. 253)
-involves focusing on B and S to pro-
vide “detailed requirements that are
then put on each object” (p. 253)
-involves synthesizing S by “merg[ing
the detailed requirements] into con-
sistent and formal interfaces on their
classes” (p. 253)
-involves producing external B and S
by “updat[ing] the logical view accord-
ingly” (p. 253)

2.9 Consider con-
currency and distri-
bution of the archi-
tecture

S 11 -involves synthesizing S based on “the
collaborating objects in interaction
diagrams” (p. 253)

2.10 Inspect the
architectural design

S, Bs 13,
14, 15

-likely to involve interpreting external
S, and deriving and evaluating B

2.11 Consider the
physical packaging
of the architecture

Be, S 5, 6 -involves generating B and S by
“defin[ing] the implementation view”
(p. 253)

2.12 Plan the inte-
gration

F

S

7

9

-involves focussing on F by “stud[ying]
the use cases that are to be implement-
ed in this iteration” (p. 253)
-involves focussing on S by “defin[ing]
the order in which subsystems should
be implemented” (p. 253)

 36

2.13 Plan integra-
tion tests and sys-
tem tests

Be

D

10

17

-involves generating expected B based
on expected F by “plan[ning] the sys-
tem tests and the integration tests, se-
lecting measurable testing goals
[which] could be expressed in terms of
the ability to execute a use-case scenar-
io with a certain response time or under
specified load” (p. 253)
-involves producing external B as a
“test plan” (p. 254)

2.14 Implement the
classes and inte-
grate

S, D,
S, Bs

11,12,
13,14,
15

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving
and evaluating B, by “cod[ing] and
unit-test[ing] the classes identified in
the architectural design” (p. 254)

2.15 Integrate the
implemented parts

S, D,
S, Bs

11,12,
13,14,
15

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving
and evaluating B, by “integrat[ing] the
subsystems into an executable architec-
tural prototype [and then testing it]” (p.
254)

2.16 Assess the
executable architec-
ture

S, D,
S, Bs

11,12,
13,14,
15

-involves synthesizing and externaliz-
ing S, then interpreting it and deriving
and evaluating B, as “[o]nce the whole
system […] has been integrated, the
System Tester tests the system” (p.
254)

Table C3. Phase 3: Construction (numbers refer to sFBS process labels;

page numbers refer to Kruchten (2004))

Activity Design
issue

sFBS
step

Comments

3.1 Plan system-
level integration

S

D

9

12

-involves focussing on S by selecting
“the order in which subsystems are to be
put together to form a working and test-
able configuration” (p. 255)
-involves producing external S as “doc-
umented in the Build Plan” p. 256)

3.2 Plan and de-
sign system-level
test

Be

Be

D

10

5

17

-involves generating expected B, pre-
sumably based on expected F (the use-
case scenarios)
-involves generating B from “preceding
iterations, which could be modified to be
reused” (p. 256)
-involves producing external B as “test

 37

scripts” (p. 256)
3.3 Refine use-
case realizations

S

S

S

11

6

9

-involves synthesizing S by “refin[ing]
the classes identified in previous itera-
tions” (p. 256)
-may involve generating S, as “[c]lasses
may need to be added” (p. 256)
-may involve focussing on S, as
“[c]hanges to classes may require a
change in subsystem partitioning” (p.
256)

3.4 Plan and de-
sign integration
tests at the sub-
system and sys-
tem levels

Be

F, Be

Be

19

7, 8

10

-involves interpreting external B as the
“Test Plan” (p. 256)
-involves focussing on F and B: “The
Designer identifies the functionality that
will be tested together and the stubs and
drivers that must be developed to support
the integration tests” (p. 256)
-involves generating B, presumably
based on expected F and B (“based on
the input from the Test Designer”, p.
256) by “develop[ing] the stubs and
drivers” (p. 256)

3.5 Develop code
and test unit

S, D,
S, Bs

S, Be

11,12,
13,14,
15

9, 8

-involves synthesizing and externalizing
S, then interpreting it and deriving and
evaluating B, by “implement[ing] the
classes in the Implementation Model
[and fixing] defects” (p. 256)
-may involve reformulation of S and B
in terms of “design changes based on
discoveries made in implementation” (p.
256)

3.6 Plan and im-
plement unit test

Be 10 -involves generating expected B, pre-
sumably based on expected F

3.7 Test unit with-
in a subsystem

S, Bs 13,14,
15

-involves interpreting external S and
deriving and evaluating B

3.8 Integrate a
subsystem

S, D 11, 12 -involves synthesizing S and producing
external S by “bringing together com-
pleted and stubbed classes that constitute
a build” (p. 257)

3.9 Test a subsys-
tem

S, Bs

D

13,14,
15
17

-involves interpreting external S and
deriving and evaluating B
-involves producing external B by
“log[ging] the defects for arbitration to
decide when they are to be fixed” (p.
257)

 38

3.10 Release a
subsystem

D 12 -involves producing external S by “re-
leas[ing] the tested version of the subsys-
tem […] into an area where it becomes
visible, and usable, for system-level in-
tegration” (p. 257)

3.11 Integrate the
system

S, D 11, 12 -involves synthesizing S and producing
external S by “add[ing] subsystems and
creat[ing] a build that is handed over to
the Integration Testers” (p. 257)

3.12 Test integra-
tion

S, Bs

D

13,14,
15
17

-involves interpreting external S and
deriving and evaluating B
-involves producing external B by
“log[ging] the defects” (p. 257)

3.13 Test the sys-
tem

S, Bs 13,14,
15

-involves interpreting external S and
deriving and evaluating B

Table C4. Phase 4: Transition (numbers refer to sFBS process labels; page

numbers refer to Kruchten (2004))

Activity Design
issue

sFBS
step

Comments

4.1 Plan deploy-
ment

D 17 -involves producing external B as the
“beta test program” (p. 242)

4.2 Develop sup-
port material

D, D 18, 17 -involves producing external F and B by
providing “information that will be re-
quired by the end user to install, operate,
use, and maintain the delivered system”
(p. 242)

4.3 Produce de-
ployment unit

D 12 -involves producing external S as the
final software (p. 242)

4.4 Beta test prod-
uct

S, Bs 13,14,
15

-involves interpreting external S and
deriving and evaluating B

Appendix D - DFSS-ICOV

Table D1. Phase 1: Identify (numbers refer to sFBS process labels; page
numbers refer to El-Haik and Roy (2005))

Activity Design
issue

sFBS
step

Comments

1.1 Idea creation R

F, F

1

4, 7

-we assume some expression of a need to
initiate designing
-involves generating and focussing on F,
by creating “a market vision, with an as-

 39

sessment of marketplace advantages” (p.
83)

1.2 Voice of the
customer and
business

R, R

F, Be

Be

F, Be

D, D

1, 2

4, 5

10

7, 8

18,17

-involves interpreting F and B, by “ob-
tain[ing] customer needs and wants (p.
84)
-involves generating F and B, by “identi-
fy[ing] and fill[ing] gaps in customer-
provided requirements”, by “estab-
lish[ing] metrics for CTSs”, “quanti-
fy[ing] CTSs” and by “align[ing] with
business objectives” (p. 84)
-involves deriving B from F, by “trans-
lat[ing] the VOC to CTSs” (p. 84)
-involves focussing on F and B, by “con-
duct[ing] risk assessment” (p. 84) and
performing a Kano analysis (p. 118)
-involves externalizing F and B, by pro-
ducing “a list of the voice of the customer
(VOC)” (p. 84) and a HOQ 1 (p. 386)

Table D2. Phase 2: Conceptualize (numbers refer to sFBS process labels;

page numbers refer to El-Haik and Roy (2005))

Activity Design
issue

sFBS
step

Comments

2.1 Concept de-
velopment

F, Be

F, Be

D, D

S

S

16, 5

7, 8

18,17

6

9

-involves deriving F from B, and gener-
ating B by “translat[ing] customer re-
quirements (CTSs or big Ys) to ser-
vice/process functional requirements”
(p. 86)
-involves focussing on F and B, by de-
termining “prioritized functional re-
quirements” (p. 114)
-involves externalizing F and B, by pro-
ducing a HOQ 2 (p. 121)
-involves generating S, by “generat[ing]
design alternatives” (p. 87)
-involves focussing on S, by “select[ing]
a process or service conceptual design”
(p. 87) using the Pugh selection method

2.2 Preliminary
design

Be, S

D, D,
D
S, Bs

10,11

18,17,
12
13,14

-involves “determin[ing] a set of design
parameters which will fulfill the FRs”
(p. 122)
-involves externalizing F, B and S, by
producing a HOQ 3 (p. 127)
-involves interpreting S and deriving

 40

S, S

15

6, 9

and evaluating B, by identifying the
potential failure modes and effects with-
in an FMEA (p. 249)
-involves generating and focussing on S,
by “decid[ing] on design controls” (p.
254)

Table D3. Phase 3: Optimize (numbers refer to sFBS process labels; page

numbers refer to El-Haik and Roy (2005))

Activity Design
issue

sFBS
step

Comments

3.1 Design optimi-
zation

S, D

S, Bs

D

11,12

13,14
15

17

One of the typical tools for this phase is
suggested to be Design of Experiments
(DOE) (p. 90)
-involves synthesizing and externalizing
S, by “vary[ing] the factors that can
cause a change in the performance of y”
(p. 264) and conducting experiments
-involves interpreting S, and deriving
and evaluating B, by collecting and ana-
lysing data from the experiments (p.
277)
-involves externalizing B, by using de-
sign scorecards (p. 90)

Table D4. Phase 4: Validate (numbers refer to sFBS process labels; page

numbers refer to El-Haik and Roy (2005))

Activity Design
issue

sFBS
step

Comments

4.1 Verification D

S, Bs

S

12

13,14
15

11

-involves externalizing S, by executing
“pilot tests” (p. 91)
-involves interpreting S and deriving and
evaluating B, by identifying the potential
failure modes and effects within an
FMEA (p. 91)
-involves synthesizing S, by “refining”
the service (p. 91)

4.2 Launch readi-
ness

D, D,
D

18,17
12

-involves externalizing F, B and S, by
“change management message[s]” (p.
406), “process capability modeling” (p.
92) and “mistake proofing” (p. 92)

