THE DATA SCIENCE ECOSYSTEM

BaLÁZs KÉGL

DR / CNRS
Laboratoire de l'Accélérateur Linéaire \&
Laboratoire de la Recherche en Informatique CNRS \& University Paris-Sud

OutLINE

- Who are we?
- Université Paris-Saclay
- Center for Data Science
- The data science ecosystem
-What do we design?
- In experimental physics
- In data science

UNIVERSITÉ PARIS-SACLAY

19 founding partners

AgroParisTech

曲 Inserm
-
netidnerime
**

CentraleSupélec

ENSTA Parsistech. univergite
ONS mink

INSTITUT d'OPTIQUE

ECOME POLYTECHNIQUE ss.visurt mals move

\qquad Parlsfech

UNIVERSITÉ PARIS-SACLAY

19 ondoleurs
60000 étudiants
6000 doctorants
15000 étudiants
en master
8 schools

11000 chercheurs
et enseignants-chercheurs
300 laboratoires
8000 publications /an
15 \% de la recherche publique française
10 départements

+ horizontal multi-disciplinary and multi-partner initiatives ("lidexes") to create cohesion

universite PARIS-SACLAY

6 Paris-Saclay Center for Data Science

A multi-disciplinary initiative to define, structure, and manage the data science ecosystem at the Université Paris-Saclay

http://www.datascience-paris-saclay.fr/ 250 researchers in $\mathbf{3 5}$ laboratories

Biology \& bioinformatics	Economy
IBISC/UEvry	LM/ENSAE
LRIUPSud	RITM/UPSud
Hepatinov	LFA/ENSAE
CESP/UPSud-UVSQ-Inserm	
IGM-I2BC/UPSud	Neuroscience
MIA/Agro	UNICOG/Inserm
MIA -MIG/INRA	U1000/Inserm
LMAS/Centrale	NeuroSpin/CEA
Chemistry	Particle physics
EA4041/UPSud	
Earth sciences	cosmology
LATMOS/UVSQ	DMPH/ONERA
GEOPS/UPSud	CosmoStat/CEA
IPSL/UVSQ	IAS/UPSUd
LSCE/UVSQ	AIM/CEA
LMD/Polytechnique	LAL/UPSud

```
Machine learning
LRI/UPSud
LTCI/Telecom
CMLA/Cachan
    LS/ENSAE
    LS/ENSAE
    LIX/Polytec
    CMA/Polytechnique
    LSS/Supélec
    CVN/Centrale
    LMAS/Centrale
    DTIM/ONERA
    IBISC/UEvry
    Visualization
    INRIA
```

Signal processing
LTCI/Telecom
CMA/Polytechnique
CVN/Centrale
LSS/Supélec
CMLA/Cachan
LIMSI
DTIM/ONERA

Statistics

LMO/UPSud
LS/ENSAE
LSS/Supélec
CMA/Polytechnique
LMAS/Centrale
MIA/AgroParisTech
LIMSI

Data Science

Design of automated methods

to analyze massive and complex data
to extract useful information

5 Paris-Saclay
Center for Data Science

Data Science

Design of automated methods

to analyze massive and complex data
to extract useful information

Focusing on inference:
 data \rightarrow knowledge

DATA IN SCIENCE: THE FOURTH PARADIGM

Astrophysics

Biology/health
A flood of omics data

Environmental sciences

The Data science LANDSCAPE

THE DATA SCIENCE LANDSCAPE

TOOLS

We are designing and learning to manage tools to accompany data science projects with different needs

Challenges

Few tools exist that can help domain scientists and data scientists to collaborate efficiently

TOOLS: LANDSCAPE TO ECOSYSTEM

What do we design?

What do experimental physicists DESIGN?

EXPERIMENTS

DETECTORS

5 Paris-Saclay Center for Data Science

DATA COLLECTION PIPELINES

- Hundreds of millions of proton-proton collisions per second
- Filtered down to 400 events per second
- still petabytes per year
- real-time (budgeted) classification: trigger

ANALYSIS PIPELINES

Goal: optimize the expected discovery significance

EXPERIMENTAL PHYSICISTS DESIGN DISCOVERY PROCESSES FOLLOWING THE SCIENTIFIC METHOD

EXPERIMENTAL PHYSICISTS DESIGN DISCOVERY PROCESSES

EXPERIMENTAL PHYSICISTS DESIGN

DISCOVERY PROCESSES

On the way they use data science techniques, even motivate the development of new techniques, but they don't care about methodological improvements as long as the job gets done reasonably efficiently

EXPERIMENTAL PHYSICISTS DESIGN

DISCOVERY PROCESSES

On the way they use data science techniques, even motivate the development of new techniques, but they don't care about methodological improvements as long as the job gets done reasonably efficiently

Innovation in data science might be hindered in such collaborations

What do data scientists design?

THE CYNICAL VIEW: WE DESIGN RESEARCH PAPERS

5 Paris-Saclay
Center for Data Science

THE CYNICAL VIEW:

WE DESIGN RESEARCH PAPERS

THE CYNICAL VIEW: WE DESIGN RESEARCH PAPERS

- In a prefect world, research papers are a means to the end of communicating scientific results

THE CYNICAL VIEW:

WE DESIGN RESEARCH PAPERS

- In a prefect world, research papers are a means to the end of communicating scientific results
- Of course, good scientific results are not uncorrelated to good research papers

THE CYNICAL VIEW:

WE DESIGN RESEARCH PAPERS

- In a prefect world, research papers are a means to the end of communicating scientific results
- Of course, good scientific results are not uncorrelated to good research papers
- But: the dominant design of research papers frames not only how we tackle problems, but also what problems we work on

WHAT DO DATA SCIENTISTS DESIGN?

WHAT DO DATA SCIENTISTS DESIGN?

- Methods to solve data science problems (data to knowledge)

What do data scientists design?

- Methods to solve data science problems (data to knowledge)
- Problems to work on

WHAT DO DATA SCIENTISTS DESIGN?

- Methods to solve data science problems (data to knowledge)
- Problems to work on
- Theoretical (mathematical) frameworks to analyze data science methods

WHAT DO DATA SCIENTISTS DESIGN?

- Methods to solve data science problems (data to knowledge)
- Problems to work on
- Theoretical (mathematical) frameworks to analyze data science methods
- Experimental techniques to validate data science methods

DESIGNING DATA SCIENCE METHODS

DESIGNING DATA SCIENCE METHODS

- A messy mixture of principles

Designing data science methods

- A messy mixture of principles
- The engineering approach: does it work for solving a problem?

Designing data science methods

- A messy mixture of principles
- The engineering approach: does it work for solving a problem?
- The mathematical approach: can we prove that it works for solving a problem?

Designing data science methods

- A messy mixture of principles
- The engineering approach: does it work for solving a problem?
- The mathematical approach: can we prove that it works for solving a problem?
- The scientific approach: can we motivate it by our (spotty) knowledge on how the brain works? Does it tell us something about the brain (simulator)?

Designing data science methods

- A messy mixture of principles
- The engineering approach: does it work for solving a problem?
- The mathematical approach: can we prove that it works for solving a problem?
- The scientific approach: can we motivate it by our (spotty) knowledge on how the brain works? Does it tell us something about the brain (simulator)?
- Fierce fighting on what the right principle is

The engineering Approach

The engineering Approach

- No first principles (electric engineering without Maxwell's laws), trial and error

5 Paris-Saclay
Center for Data Science

The engineering Approach

- No first principles (electric engineering without Maxwell's laws), trial and error
- Needs rigorous experimental design setup, benchmark instantiations of a problem, quantitative quality measurements

The engineering Approach

- No first principles (electric engineering without Maxwell's laws), trial and error
- Needs rigorous experimental design setup, benchmark instantiations of a problem, quantitative quality measurements
- Benchmark problems are often "abstracted away" from real problems

The engineering Approach

- No first principles (electric engineering without Maxwell's laws), trial and error
- Needs rigorous experimental design setup, benchmark instantiations of a problem, quantitative quality measurements
- Benchmark problems are often "abstracted away" from real problems
- Data scientists usually don't care if a "real" problem is solved, as long as his/her method can be shown to improve results on benchmarks

DATA SCIENCE PROBLEMS

DATA SCIENCE PROBLEMS

- Usually come from outside of data science, we call them "real problems"

5 Paris-Saclay
Center for Data Science

DATA SCIENCE PROBLEMS

- Usually come from outside of data science, we call them "real problems"
- We turn them into an abstract problems by formalizing them (i.e, input, output, objective or merit function)

Data science problems

- Usually come from outside of data science, we call them "real problems"
- We turn them into an abstract problems by formalizing them (i.e, input, output, objective or merit function)
- Introducing a new problem into a community is harder than it looks, needs marketing

Data science problems

- Usually come from outside of data science, we call them "real problems"
- We turn them into an abstract problems by formalizing them (i.e, input, output, objective or merit function)
- Introducing a new problem into a community is harder than it looks, needs marketing
- no benchmark in the beginning: paper cannot be formatted in the right way

5 Paris-Saclay

Data science problems

- Usually come from outside of data science, we call them "real problems"
- We turn them into an abstract problems by formalizing them (i.e, input, output, objective or merit function)
- Introducing a new problem into a community is harder than it looks, needs marketing
- no benchmark in the beginning: paper cannot be formatted in the right way
- Once it's done, everybody tries his/her favorite hammer

DATA SCIENTISTS DESIGN METHODS

DATA SCIENTISTS DESIGN METHODS

Their goal is to improve methods on established benchmarks, and they don't care if a real problem is solved or if the improvement matters

DATA SCIENTISTS
 DESIGN METHODS

They don't care if a real problem is solved

PHYSICISTS DESIGN
DISCOVERY PROCESSES

They don't care about methodological improvements

THANK YOU!

THE MATHEMATICAL APPROACH

Center for Data Science

THE MATHEMATICAL APPROACH

- Design a mathematical framework in which data science methods can be analyzed
\leftrightarrows Paris-Saclay

THE MATHEMATICAL APPROACH

- Design a mathematical framework in which data science methods can be analyzed
- Often several steps further on abstraction than even the benchmark problems

THE MATHEMATICAL APPROACH

- Design a mathematical framework in which data science methods can be analyzed
- Often several steps further on abstraction than even the benchmark problems
- Often the results are "loose", vacuous for the practical problems (e.g. worst case, infinite sample size)

THE MATHEMATICAL APPROACH

- Design a mathematical framework in which data science methods can be analyzed
- Often several steps further on abstraction than even the benchmark problems
- Often the results are "loose", vacuous for the practical problems (e.g. worst case, infinite sample size)
- A new analysis technique can make your carrier: all methods can be reanalyzed

THE MATHEMATICAL APPROACH

- Design a mathematical framework in which data science methods can be analyzed
- Often several steps further on abstraction than even the benchmark problems
- Often the results are "loose", vacuous for the practical problems (e.g. worst case, infinite sample size)
- A new analysis technique can make your carrier: all methods can be reanalyzed
- The coincidence of practical success of a method and its successful (but loose) mathematical analysis is often mistaken for causality, justification of the mathematical approach

THE SCIENTIFIC METHOD

Center for Data Science

THE SCIENTIFIC METHOD

- Modell is well established, we are testing Model2

Center for Data Science

THE SCIENTIFIC METHOD

- Modell is well established, we are testing Model2
- Model2 predicts tufas, Modell doesn't
\leftrightarrows Paris-Saclay
Center for Data Science

THE SCIENTIFIC METHOD

- Modell is well established, we are testing Model2
- Model2 predicts tufas, Modell doesn't
- We design an experiment/detector/analysis pipeline to generate and see tufas (if they exist)

THE SCIENTIFIC METHOD

- Modell is well established, we are testing Model2
- Model2 predicts tufas, Modell doesn't
- We design an experiment/detector/analysis pipeline to generate and see tufas (if they exist)
- If we see tufas, Modell is invalidated

THE SCIENTIFIC METHOD

- Modell is well established, we are testing Model2
- Model2 predicts tufas, Modell doesn't
- We design an experiment/detector/analysis pipeline to generate and see tufas (if they exist)
- If we see tufas, Modell is invalidated
- If Model2 has no competitors, it is accepted

The scientific method

- Modell is well established, we are testing Model2
- Model2 predicts tufas, Modell doesn't
- We design an experiment/detector/analysis pipeline to generate and see tufas (if they exist)
- If we see tufas, Modell is invalidated
- If Model2 has no competitors, it is accepted
- Today's tufas are hard to generate, and our observation is noisy, so tufas + noise can look like known objects (say birds). All we can say that if Modell is valid, the number of tufa-looking birds is significantly smaller than the number of tufas we see.

A LESS CYNICAL VIEW: WE DESIGN DISCOVERY PROCESSES

