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OUTLINE

* Who are we!

* Center for Data Science

* The data science ecosystem

* What do we design!?
* In

* In data science
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UNIVERSITE PARIS-SACLAY

19 fondateurs

60 000 s:udionts
6 000 dociorants

15 000 siudionts

en master
8 Schools

17 000 crercheurs

et enseignants-chercheurs

300 iaboratoires
8000 publications /an

15 % de la recherche
publigue francaise

10 départements

+ horizontal multi-disciplinary and multi-partner
initiatives (“lidexes’”) to create cohesion
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PARIS-SACLAY

Paris-Saclay
J Center for Data Science

A multi-disciplinary initiative to
the data science ecosystem at the Université Paris-Saclay

http://www.datascience-paris-saclay.fr/
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DATA SCIENCE

Design of automated methods
to analyze massive and complex data

to extract useful information
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DATA SCIENCE

Design of automated methods
to analyze massive and complex data

to extract useful information

Focusing on inference:

data — knowledge
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DATA IN SCIENCE: THE FOURTH PARADIGM

Astrophysics
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THE DATA SCIENCE LANDSCAPE

Data scientist

Data science

statistics
machine learning
information retrieval

Data engineer Applied scientist

signal processing
data visualization
databases

Tool building Domain science

software engineering energy and physical sciences
clouds/grids health and life sciences
high-performance Earth and environment
computing economy and society
optimization brain

Software engineer Domain scientist

Data trainer
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TOOLS

We are designhing and learning to manage tools
to accompany data science projects with

different needs
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CHALLENGES

Few tools exist that can help domain
scientists and data scientists to

collaborate efficiently
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TOOLS: LANDSCAPE TO ECOSYSTEM

Data scientist

Data science

statistics
machine learning
prmation retricy L )
. @i SRS R « interdisciplinary projects
. Open Software Initiative LPEMIEERE - matchmaking tool

i . : : : I yeownl . design and innovation strategy workshops
code consolidator and engineering projects ~data challenges

Data engineer Applied scientist

- data science bootcamps
8 - IT platform for linked data
- annotation tool

Software engineer Domain expert

Data trainer
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WHAT DO WE DESIGN?
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WHAT DO EXPERIMENTAL PHYSICISTS
DESIGN!?
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DETECTORS
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Tile calorimeters

LAr hadronic end-cap and

forward calorimeters
Pixel detector ~

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation fracker
Semiconductor tracker
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DATA COLLECTION PIPELINES

» Hundreds of millions of proton-proton collisions per
second

* Filtered down to 400 events per second
» still petabytes per year

* real-time (budgeted) classification: trigger
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ANALYSIS PIPELINES

Goal: optimize the expected

count (per year)
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EXPERIMENTAL PHYSICISTS DESIGN
DISCOVERY PROCESSES
FOLLOWING THE
SCIENTIFIC METHOD
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EXPERIMENTAL PHYSICISTS DESIGN
DISCOVERY PROCESSES
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EXPERIMENTAL PHYSICISTS DESIGN
DISCOVERY PROCESSES

On the way they use data science techniques, even
motivate the development of new techniques, but
they don’t care about methodological improvements
as long as the job gets done reasonably efficiently
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EXPERIMENTAL PHYSICISTS DESIGN
DISCOVERY PROCESSES

On the way they use data science techniques, even
motivate the development of new techniques, but
they don’t care about methodological improvements
as long as the job gets done reasonably efficiently

Innovation in data science might be hindered in
such collaborations
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WHAT DO DATA SCIENTISTS DESIGN?

20
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THE CYNICAL VIEW:
WE DESIGN RESEARCH PAPERS

2
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THE CYNICAL VIEW:
WE DESIGN RESEARCH PAPERS

22
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THE CYNICAL VIEW:
WE DESIGN RESEARCH PAPERS

* In a prefect world, research papers are a means to the
end of communicating scientific results
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THE CYNICAL VIEW:
WE DESIGN

* In a prefect world, research papers are a

» Of course, good scientific results are not uncorrelated to
good research papers
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THE CYNICAL VIEW:
WE DESIGN

* In a prefect world, research papers are a

» Of course, good scientific results are not uncorrelated to
good research papers

* But: the dominant design of research papers frames not
only , but also what problems we

work on

Paris-Saclay
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WHAT DO DATA SCIENTISTS DESIGN?
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WHAT DO DATA SCIENTISTS DESIGN?

to solve data science problems (data to
knowledge)
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to solve data science problems (data to
knowledge)

* Problems to work on
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WHAT DO DATA SCIENTISTS DESIGN?

. to solve data science problems (data to
knowledge)

* Problems to work on

* [heoretical (mathematical) frameworks to analyze data
science methods
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WHAT DO DATA SCIENTISTS DESIGN?

. to solve data science problems (data to
knowledge)

* Problems to work on

* [heoretical (mathematical) frameworks to analyze data
science methods

. to validate data science
methods

23
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DESIGNING DATA SCIENCE METHODS
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DESIGNING DATA SCIENCE METHODS

* A messy mixture of principles

24



DESIGNING DATA SCIENCE METHODS

* A messy mixture of principles

* The approach: does it work for solving a problem!?
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DESIGNING DATA SCIENCE METHODS

* A messy mixture of principles

* The approach: does it work for solving a problem!?

* The mathematical approach: can we prove that it works for solving a
problem?

* The scientific approach: can we motivate it by our (spotty) knowledge
on how the brain works? Does it tell us something about the brain
(simulator)?
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DESIGNING DATA SCIENCE METHODS

* A messy mixture of principles

* The approach: does it work for solving a problem!?

* The mathematical approach: can we prove that it works for solving a
problem?

* The scientific approach: can we motivate it by our (spotty) knowledge
on how the brain works? Does it tell us something about the brain
(simulator)?

* Fierce fighting on
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THE ENGINEERING APPROACH
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THE ENGINEERING APPROACH

. (electric engineering without Maxwell’s
laws), trial and error
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THE ENGINEERING APPROACH

. (electric engineering without Maxwell’s
laws), trial and error

* Needs rigorous experimental design setup, benchmark
instantiations of a problem,

* Benchmark problems are often “abstracted away” from real
problems

* Data scientists usually don’t care if a “real” problem is solved,
as long as his/her method can be shown to

25
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DATA SCIENCE PROBLEMS
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DATA SCIENCE PROBLEMS

» Usually come from of data science, we call them
“real problems”
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» Usually come from of data science, we call them
“real problems”

* We turn them into an abstract problems by formalizing
them (i.e, input, output, objective or merit function)
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DATA SCIENCE PROBLEMS

* Usually come from of data science, we call them
“real problems”

* We turn them into an abstract problems by formalizing
them (i.e, input, output, objective or merit function)

* Introducing a
than it looks, needs marketing
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“real problems”
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DATA SCIENCE PROBLEMS

* Usually come from of data science, we call them
“real problems”

* We turn them into an abstract problems by formalizing
them (i.e, input, output, objective or merit function)

* Introducing a
than it looks, needs marketing

* no benchmark in the beginning: paper cannot be formatted in the
right way

* Once it’s done, everybody tries his/her favorite hammer

Paris-Saclay
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DATA SCIENTISTS DESIGN METHODS
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DATA SCIENTISTS DESIGN METHODS

Their goal is to improve methods on established
benchmarks, and they don't care if a real problem is
solved or if the improvement matters
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DATA SCIENTISTS PHYSICISTS DESIGN
DESIGN METHODS DISCOVERY PROCESSES

They don’t care
about methodological
Improvements

They don’t care if a real
problem is solved

28
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THANK YOU!
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THE MATHEMATICAL APPROACH
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* Design a in which data science methods can
be analyzed
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* Design a in which data science methods can
be analyzed

» Often several steps further on abstraction than even the benchmark
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THE MATHEMATICAL APPROACH

* Design a in which data science methods can
be analyzed

» Often several steps further on abstraction than even the benchmark
problems

 Often the results are “loose”, vacuous for the practical problems (e.g.
worst case, infinite sample size)

- A can make your carrier: all methods can be
reanalyzed

* The coincidence of practical success of a method and its successful
(but loose) mathematical analysis is often :
justification of the mathematical approach

Paris-Saclay
CJ Center For Data Science
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THE SCIENTIFIC METHOD
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THE SCIENTIFIC METHOD

is well established, we are testing Model2
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http://www.mit.edu/~jbt/9.iap/9.94.Tenenbaum.ppt

THE SCIENTIFIC METHOD

is well established, we are testing Model2

* Model2 predicts tufas, Modell doesn’t
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THE SCIENTIFIC METHOD
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* Model2 predicts tufas, Modell doesn’t

* We design an experiment/detector/analysis pipeline to generate and
see tufas (if they exist)
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THE SCIENTIFIC METHOD

. is well established, we are testing Model2
* Model2 predicts tufas, Modell doesn’t

* We design an experiment/detector/analysis pipeline to generate and
see tufas (if they exist)

- If we see tufas, Modell is invalidated
* If Model2 has no competitors, it is accepted

* Today's tufas are hard to generate, and our observation is noisy, so
. All we can say

that if Modell is valid, the number of tufa-looking birds is significantly
smaller than the number of tufas we see.

Paris-Saclay

universite .
PARIS-SACLAY CJ Center for Data Science

31


http://www.mit.edu/~jbt/9.iap/9.94.Tenenbaum.ppt

A LESS CYNICAL VIEW:
WE DESIGN DISCOVERY PROCESSES
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