A category-theoretic approach to materials design

David I. Spivak

dspivak@math.mit.edu Mathematics Department Massachusetts Institute of Technology

Presented on 2015/01/26 at the 8th Design Theory SIG Paris Workshop Session: Mathematics and Design Theory

1/32

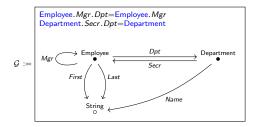
Informatics for design

- To understand politics, follow the money.
- To understand design, what should you follow?
- It has been proposed that you should follow the information.
 - What is the structure of the information being used?
 - How is information being combined?
 - How is information being communicated and translated?
 - How is information guiding decisions?
- What kind of "accounting" is needed to follow the information?
 - To record the flow of money we use a spreadsheet.
 - How do we record the flow of information through a design process?
 - How to do this at scale?

くほと くほと くほと

Mathematical informatics

- Mathematical informatics is the mathematics of information structures.
 - Databases,
 - Architecture plans,
 - Grammars,
 - Programming languages.
- Of all mathematical fields, category theory seems to fit best.
- So we beautify the name and consider Categorical Informatics.


Example: Mathematical conception of a database

• Databases are information-bearing structures.

Employee					
ld	First	Last	Mgr	Dpt	
101	David	Hilbert	103	q10	
102	Bertrand	Russell	102	×02	
103	Alan	Turing	103	q10	

Department			
ld	Name	Secr	
q10	Sales	101	
×02	Production	102	

• The structure of a database is: a graph with path equations, \mathcal{G} .

• The data itself, as well as queries, etc., have a compatible formalism.

Toward a proper science of design

In any special doctrine of nature there can be only as much proper science as there is mathematics therein. –Immanuel Kant

- Mathematical theories of design
 - Several have been proposed, e.g., topology CDP, set theory C-K.
 - Could a theory of design be *verified* mathematically (as in physics)?
- Proposal: use categorical informatics.
 - Formalize information itself as a mathematical object (think databases).
 - Follow the information through a given design process.
 - Roughly, I'm offering a mathematically-verifiable description of K.

Categorical informatics

- Of all math fields, why is category theory best suited for informatics?
 - CT was invented to build bridges between mathematical fields.
 - Since its invention in 1940, it has civilized much of mathematics.
 - Topology (orig.), algebra (Grothendieck), logic & set theory (Lawvere)
 - It has moved into computer science, linguistics, and physics.
- Category theory is the mathematics of structures.
 - Sets, vector spaces, algebraic equations: all are structured in this sense.
 - Layering structure, and caring for its interoperability is what CT is for.

くほと くほと くほと

High-level view of the talk

• I will discuss an abstract perspective on modular design.

- Modular pieces: building blocks.
- Methods for combining them: *building instructions*.
- Put these together to get a modular design environment.
- Operads: a category-theoretic framework for modular design.
- I will present one concrete application of operads in modular design.
 - The modular design environment of "hierarchical protein materials".
 - This is just the first finished application of the basic idea.
 - Please keep in mind how it can generalize to other environments.
- I will say how operads may be used to store artifact theories.

What do I mean by artifact theory?

By artifact theory, I mean the following.

- As designers create new structures, they use information.
 - How smaller pieces can be put together to form complex structures.
 - How behavioral bounds on small lead to behavioral bounds on large.
- The former is an understanding of architectural design patterns.
- The latter is experience with structure-function relationships.
- Designers also create new information.
 - They may discover new architectural design patterns.
 - They may discover new structure-function relationships.
 - Through experimentation, new theories of "how things work" emerge.

The artifact theory is the evolving knowledge held by the design team.

Talk outline

For the remainder of this talk, I will discuss:

- A project we did in materials science: software called Matriarch.
 - Matriarch stands for Materials Architecture.
 - How Matriarch helps with the materials design process.
 - Joint work with Tristan Giesa, Ravi Jagadeesan, and Markus Buehler.
- Category theory in pictures.
 - Focus on *operads*, a framework within CT, useful for design.
 - How the materials science picture generalizes to other design problems.
- An organizational framework for artifact theories.
 - How to organize information for designers to use in their process?
 - A systematic mathematical approach to organizing this information.
 - E.g., querying the database: "I want to build something with properties XYZ. What are my options?"

9 / 32

Materials design

Materials design

- What we want: High-quality, environmentally-friendly materials.
 - Old idea: high-quality macro requires high-quality micro.
 - New idea: high-quality macro is achievable with cheap, abundant micro.

• Examples: silk, collagen.

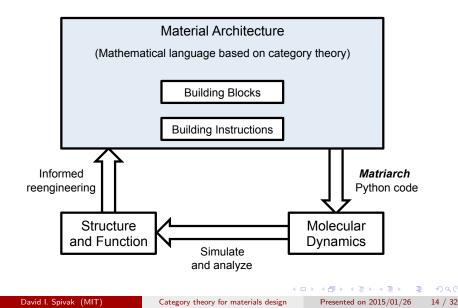
- These materials are made by animals by eating widely-available food.
- The micro is cheap and abundant, but the result has excellent qualities.
- Silk is stronger than steel; collagen is used in bone, skin, cartilage, etc.
- These materials are assemblies of simple (amino acid) building blocks.
- How to mimic these amazing materials and fit them to our needs?
 - In the wet lab, you investigate their hierarchical structures.
 - If you need to modify something, you'll want to use computers.

Computational modeling

• A new paradigm in materials design: control at all levels.

- Old idea: take known macro-materials and combine them in new ways.
- New idea: design from the ground up, fine-tuning at all levels.
- This requires a massive amount of computation.
 - You can't do all this in a wet lab.
 - Simulation allows you to play around with micro-structures.
 - "This amino acid is preventing what you want; can we get rid of it?"
 - Molecular dynamics (MD) simulators are used to run experiments.
- The current state of computational materials design.
 - There does not currently exist a general tool to create new microstructures.
 - You have to do everything (place atoms and bonds) by hand.
 - This is extremely tedious, and leads to problematic work-arounds.

イロト 不得下 イヨト イヨト


The challenges to overcome

- The dilemma: spend time programming or equilibrating??
 - If you want to save labor time, you place atoms into straight chains.
 - But these take forever to equilibrate (settle into place).
 - Moreover, they may equilibrate to the wrong shape (local minimum).
- Computational modelers develop tricks.
 - Tiny pieces of code (scripts) that work for what they need now.
 - These scripts are difficult to share, reuse, and explain.
- All these problems can be solved simultaneously.
 - Make a language to synthesize hierarchical structures.
 - Atoms placed near their final positions reduces equilibration time.
 - It is much easier to communicate in this language than in scripts.

Materials architecture

- What is materials architecture?
 - Building blocks: proteins, from amino acids to collagen.
 - Building instructions: forming new bb's out of old.
 - Hierarchical materials are built by combining these into programs.
- In general, an modular design environment will be
 - Your set of building blocks,
 - Your set of building instructions.
 - The "space" of architectures that can be assembled in this way.

Summary of the Matriarch design process

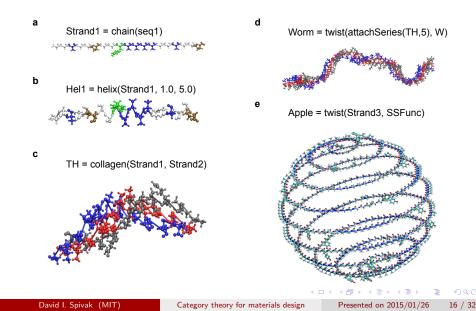
Building blocks and building instructions in Matriarch

Building blocks:

- 20 standard amino acids, plus proline (for creating collagen).
- Users can import their own building blocks from PDB.

Building instructions:

- attach,
- space,
- overlay,
- reverse,
- rigidMotion,
- twist,
- makeArray.

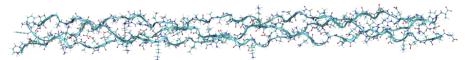

Matriarch programs:

• Any combination of building instructions applied to building blocks

- 31

イロト 不得下 イヨト イヨト

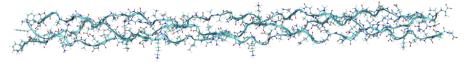
Sample architectures



Example of materials architecture: collagen

- Collagen is the most common protein in mammals.
- Its design is hierarchical.

Dav


- A fibril of collagen is an array of tropocollagen molecules.
- Each tropocollagen molecule is a right-handed triple helix.
- Each of its three strands is a left-handed helix.
- Each of these individual helices is a chain of many amino acids.

vid I	. Spivak (MIT)		Category theory for materials design	Presented on 2015/01/26	17 / 32
	tropocollagen	=	overlay(helhel1, helhel1rot, helf	nel2rot) ► < ≣ ► < ≣ ► =	୬୯୯
	helhel2rot	=	rigidMotion(helhel2, rotate=24	0, shift=-5.6)	
	helhel1rot	=	rigidMotion(helhel1, rotate=12	0, shift=2.8)	
	helhel2	=	helix(hel2, rad=4, pitch=85, ha	anded=R)	
	helhel1	=	helix(hel1, rad=4, pitch=85, ha	anded=R)	
	hel2	=	helix(a2, rad=1.5, pitch=9.5, h	anded=L)	
	hel1	=	helix(a1, rad=1.5, pitch=9.5, h	nanded=L)	
	a2	=	chain(seq2)		
	al	=	chain(seq1)		

Materials architecture

- A fibril of collagen is an array of tropocollagen molecules.
- Each tropocollagen module is a right-handed triple helix.
- Each of its three strands is a left-handed helix.
- Each of these individual helices is a chain of many amino acids.

al	=	chain(seq1)		
a2	=	chain(seq2)		
hel1	=	helix(a1, rad=1.5, pitch=9.5, handed=L)		
hel2	=	helix(a2, rad=1.5, pitch=9.5, handed=L)		
helhel1	=	helix(hel1, rad=4, pitch=85, handed=R)		
helhel2	=	helix(hel2, rad=4, pitch=85, handed= R)		
helhel1rot	=	rigidMotion(helhel1, rotate=120, shift=2.8)		
helhel2rot	=	rigidMotion(helhel2, rotate=240, shift=-5.6)		
tropocollagen	=	overlay(helhel1, helhel1rot, helhel2rot)		
collagen	=	makeArray(tropocollagen,1000,1000,distance=8.1)		
		(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	Ē.	୬ବ

18 / 32

Matriarch as a design tool

$${\tt attachSeries} \Big({\tt helix}({\it seq}, {\tt rad}{=}4, {\tt pitch}{=}85), {\tt copies} = 10 \Big)$$

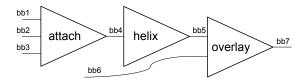
- We already said:
 - With Matriarch, it is easy to adjust protein material architecture.
 - Equilibration times are drastically reduced.
 - The equilibration is controlled: no wrong foldings.
- Just as important: The result is a human-understandable structure.
 - A set of descriptive commands to synthesize the material.
 - "Carve nature at its joints."
 - This, instead of a list of atomic coordinates, or a prose description.
 - It provides a better position from which to build an artifact theory.
- Note: this includes parametric design, but not limited to it.
 - One optimizes a given product ("what's the best seq, rad, pitch?")
 - But hierarchical continuation is key: use it as a part in a bigger whole.

What's this got to do with category theory?

- We said Matriarch was built "using" category theory.
- But why is CT necessary?
- Isn't the Matriarch idea fairly simple and intuitive?
- Answer: category theory led to this intuitive design.

Category theory was the software specification

- We first understood the architecture problem using operads.
- Here's what to think of when you hear the word "operad":
 - Building blocks,
 - Building instructions,
 - Guaranteed equivalences between different programs you can create.


reverse(attach(x, y)) = attach(reverse(y), reverse(x))

- The code then followed the mathematical (operadic) specification.
 - Goguen proposed category theory as a software specification language.
- Note: you don't need to know operads to work with Matriarch.

Explaining operads (a very rough sketch)

• What is the relation between operads and category theory?

- Analogy: the relation between line integrals and calculus.
- They are important for any expert to know, but it's just one piece.
- They are useful for certain problems.
- They are a generalization of the founding idea.
- Categories are worlds of things and connections from one to another.
- Operads are worlds of things and connections from many to another.
 - A Matriarch command uses many, say X_1, X_2, X_3 , to build one Y.

How operads are useful in design

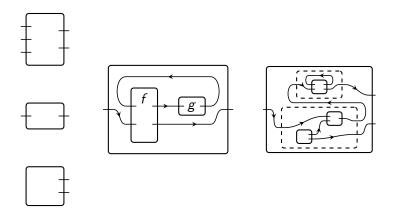
- Operads can be thought of as the language of assembly.
 - Or, modular design environments.
- As said above, an operad $\mathcal O$ consists of:
 - a set of building blocks,
 - a set of building instructions,
 - a set of guaranteed equivalences between different programs, e.g.,

reverse(attach(x, y)) = attach(reverse(y), reverse(x))

• It is a language for thinking about building complex from simple.

Wiring diagrams type 1: interconnected cells

Programs


-

Wiring diagrams 2: processes

Building instructions

Programs

< E

3

Operad mappings

- Recall from above:
 - $\bullet\,$ Matriarch uses an operad ${\cal M}$ to encodes material architecture.
 - Other operads are useful for other design spaces, e.g., process design.
 - Still other operads are useful in pure math, e.g., Set.
- The last math we should discuss today: Operad mappings.
 - Operad mappings allow us to translate between design spaces.
 - Example: the *processes* operad maps to the *cells* operad.
 - Operad mappings allow us to change the operad and predict its effect.
 - Operad mappings allow us to connect into the mathematical universe.
- \bullet What is an operad mapping $\mathcal{M} \to \mathcal{N}?$ It is a formula, which
 - $\bullet\,$ sends building blocks in ${\cal M}$ to building blocks in ${\cal N},$
 - $\bullet\,$ sends building instructions in ${\cal M}$ to building instructions in ${\cal N},$
 - \bullet ensures that all guarantees in ${\cal M}$ also hold in ${\cal N}.$
- We will use operad mappings soon, but let's get back to the point.

26 / 32

How operads may further support design

Where are we now?

- I have discussed operads in general.
- I have also shown our specific application: Matriarch.

attachSeries(helix(*seq*, rad=4, pitch=85), copies = 10)

- Matriarch aids the materials designer by:
 - speeding up equilibration times,
 - providing a language for creating and thinking about structures.
- In the future, I want it to hold the *artifact theory* for materials.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Artifact theories as information structures

- Designers typically use diverse information sources to solve problems.
 - First-hand knowledge about what works.
 - Discussions with other designers, engineers, and users.
 - Catalogs of information on relevant subjects.
 - Together, all this defines their artifact theory, and it evolves.
- My goal is to find the structure that this information likes to live in.
 - By what scheme should the artifact theory be arranged?
 - What is the *mathematical shape* of this information?
- I believe that operads provide this structure, this information-shape.

Operads and artifact theories

How to understand the evolving artifact theory mathematically?

- Suppose given an operad $\mathcal O$ for a design space.
- $\bullet \ \mathcal{O}$ encodes the known building blocks and building instructions.
- What if we want to add a new building block or building instruction?
 - $\bullet\,$ This is represented by a new, slightly bigger operad ${\cal O}'.$
 - $\bullet\,$ And, importantly, an operad mapping $\mathcal{O}\to\mathcal{O}'$ comparing them.
 - The mapping allows import of old knowledge to new structure.
- But how does the knowledge *about* building blocks tie in?
 - For each building block x, designers consider certain metrics.
 - For example, they may consider strength and toughness of materials.
 - They consider how building instructions affect the metrics.
- I think the knowledge can be stored in an operad mapping $\mathcal{O} \xrightarrow{\kappa} \mathbf{Set}$.
 - K holds the set of metric values (strength=3, toughness=5) for blocks
 - and our knowledge about the affect of building instructions on metrics.

What we can hope for

Here is a possible future design environment.

- There is a set of building blocks and building instructions.
 - $\bullet\,$ This is formalized by a mathematical object called an operad $\mathcal{O}.$
 - But like Matriarch, no one has to know that.
 - The operad \mathcal{O} , as well as all math written below, sit in the background.
- Designers use \mathcal{O} to create custom architectures.
 - Building blocks, building instructions provide a well-formed language.
- The knowledge $K : \mathcal{O} \rightarrow \mathbf{Set}$ is like the state of a database.
 - Predict behavior of new designs using knowledge $K : \mathcal{O} \rightarrow \mathbf{Set}$.
 - It can be queried: "I want to build something with properties XYZ. What are my options?"
 - Update the operad \mathcal{O} or the knowledge K through experimentation.

Summary

- One way to study design is to consider how designers use information.
 - With a mathematical underpinning, this study can be more scientific.
- I discussed Matriarch and operads.
 - Matriarch allows the assembly of novel protein materials.
 - These can be tested in molecular dynamics simulators.
 - An operad encodes a set of building blocks and building instructions.
 - These can be used to assemble arbitrarily complex architectures.
- Mappings between operads will allow us to:
 - Communicate between different design teams;
 - Import knowledge from other design problems;
 - Add new building blocks or instructions in a given design space;
 - Add to our given knowledge about structure-function relationships.

イロト 不得下 イヨト イヨト

Thanks for the invitation to speak!

David I. Spivak (MIT)

Category theory for materials design

Presented on 2015/01/26

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

32 / 32

臣